• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 3, Pages: 236-246

Original Article

Yolo Based Vision-Aided Obstacles Navigation and Avoidance with Path Planning using Sarsa Algorithm for Biped Robot in an Uncertain Hospital Environment

Received Date:05 September 2023, Accepted Date:19 December 2023, Published Date:13 January 2024


Background: This paper presents a method devised to ensure the secure navigation of biped robots within hospital environments by meticulously identifying an optimal collision-free path from initial to final positions while mitigating potential damage from undetected small objects. Methods: Implementation of a modified SARSA algorithm facilitates the seamless movement of biped robots amidst unknown environments replete with static obstacles. Extensive evaluation of several YOLO algorithms is conducted to ascertain accurate vision-based obstacle detection within hospital images. Subsequent utilization of the SARSA algorithm enables the planning of obstacle-free paths within the identified hospital setting. Findings: Within the evaluated YOLO algorithms, Yolov8 emerges as the pinnacle, showcasing unparalleled accuracy in object identification and refining bounding box precision for robot navigation within complex hospital environments. The SARSA-based path planning ensures the creation of collision-free routes, affirming safe traversal for the biped robot. Particularly noteworthy is Yolov8's exceptional precision in detecting minute objects, significantly reducing collision risks. Novelty: This research marks a significant stride in advancing human-like path planning for biped robots maneuvering through intricate hospital settings. The emphasis on accurate object identification stands as a linchpin for guaranteeing the robot's secure traversal. Significance: The integration of Yolov8 substantially augments the biped robot's capacity to precisely detect small objects, thereby mitigating collision risks and potential damage. Moreover, the successful application of the SARSA algorithm in planning obstacle-free paths within complex hospital environments holds promise for augmenting real-world robot navigation, especially in sensitive environments like hospitals.

Keywords: Object Detection, YOLO Algorithm, Robotics, Unknown Environment, Obstacles Detection, Yolov8, Sarsa Algorithm, Path Planning


  1. Miccio E, Veneruso P, Opromolla R, Fasano G, Tiana C, Gentile G. AI-powered vision-aided navigation and ground obstacles detection for UAM approach and landing. In: 2023 IEEE/AIAA 42nd Digital Avionics Systems Conference (DASC). Barcelona, Spain, 01-05 October 2023. IEEE. p. 1–10.
  2. Xia X, Zhang P, Sun J. YOLO-Based Semantic Segmentation for Dynamic Removal in Visual-Inertial SLAM. In: CISC 2023: Proceedings of 2023 Chinese Intelligent Systems Conference, Lecture Notes in Electrical Engineering. (Vol. 1089, pp. 377-389) Springer, Singapore. 2023.
  3. Xu Z, Zhan X, Xiu Y, Suzuki C, Shimada K. Onboard Dynamic-Object Detection and Tracking for Autonomous Robot Navigation With RGB-D Camera. IEEE Robotics and Automation Letters. 2024;9(1):651–658. Available from: https://doi.org/10.1109/LRA.2023.3334683
  4. Bao W, Zhu Z, Hu G, Zhou X, Zhang D, Yang X. UAV remote sensing detection of tea leaf blight based on DDMA-YOLO. Computers and Electronics in Agriculture. 2023;205. Available from: https://doi.org/10.1016/j.compag.2023.107637
  5. Tran Q, Choate J, Taylor CN, Nykl S, Curtis D. Monocular Vision and Machine Learning for Pose Estimation. In: 2023 IEEE/ION Position, Location and Navigation Symposium (PLANS). (pp. 128-136) IEEE. 2023.
  6. Malik V, Reis MC, Albuquerque VHC. Adaptive Whale Optimization with Deep Learning Enabled RefineDet Network for Vision Assistance on 6G Networks. In: Gupta D, Ragab M, Mansour RF, Khamparia A, Khanna A., eds. AI-Enabled 6G Networks and Applications (1). (pp. 93-110) Wiley Telecom. 2023.
  7. Song Q, Li S, Bai Q, Yang J, Zhang X, Li Z, et al. Object Detection Method for Grasping Robot Based on Improved YOLOv5. Micromachines. 2021;12(11):1–18. Available from: https://doi.org/10.3390/mi12111273
  8. Zhou S, Bi Y, Wei X, Liu J, Ye Z, Li F, et al. Automated detection and classification of spilled loads on freeways based on improved YOLO network. Machine Vision and Applications. 2021;32(2). Available from: https://doi.org/10.1007/s00138-021-01171-z
  9. Li C, Li L, Jiang H, Weng K, Geng Y, Li L, et al. Yolov6: A single-stage object detection framework for industrial applications. 2022. Available from: https://doi.org/10.48550/arXiv.2209.02976
  10. Wen S, Jiang Y, Cui B, Gao K, Wang F. A Hierarchical Path Planning Approach with Multi-SARSA Based on Topological Map. Sensors. 2022;22(6):1–18. Available from: https://doi.org/10.3390/s22062367
  11. Zhou C, Huang B, Fränti P. A review of motion planning algorithms for intelligent robots. Journal of Intelligent Manufacturing. 2022;33(2):387–424. Available from: https://doi.org/10.1007/s10845-021-01867-z
  12. Francies ML, Ata MM, Mohamed MA. A robust multiclass 3D object recognition based on modern YOLO deep learning algorithms. Concurrency and Computation: Practice and Experience. 2022;34(1):1–24. Available from: https://onlinelibrary.wiley.com/doi/epdf/10.1002/cpe.6517
  13. Shaju S, George T, Francis JK, Joseph M, Thomas MJ. Conceptual design and simulation study of an autonomous indoor medical waste collection robot. IAES International Journal of Robotics and Automation. 2023;12(1):29–40. Available from: http://doi.org/10.11591/ijra.v12i1.pp29-40
  14. Graf B, Eckstein J. Service Robots and Automation for the Disabled and Nursing Home Care. In: SYN., ed. Springer Handbook of Automation, Springer Handbooks . (Vol. 3, pp. 1331-1347) Springer, Cham. 2023.
  15. Abdi A, Adhikari D, Park JH. A Novel Hybrid Path Planning Method Based on Q-Learning and Neural Network for Robot Arm. Applied Sciences. 2021;11(15):1–19. Available from: https://doi.org/10.3390/app11156770
  16. Xu S, Gu Y, Li X, Chen C, Hu Y, Sang Y, et al. Indoor Emergency Path Planning Based on the Q-Learning Optimization Algorithm. ISPRS International Journal of Geo-Information. 2022;11(1):1–18. Available from: https://doi.org/10.3390/ijgi11010066
  17. Karur K, Sharma N, Dharmatti C, Siegel JE. A Survey of Path Planning Algorithms for Mobile Robots. Vehicles. 2021;3(3):448–468. Available from: https://doi.org/10.3390/vehicles3030027


© 2024 Duhan & Panwar.  This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.