• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 9, Pages: 765-775

Original Article

A comprehensive study on Physico-Mechanical characteristics of Okra fibre (Abelmoschus esculentus) for textile applications

Received Date:19 December 2020, Accepted Date:09 March 2021, Published Date:19 March 2021

Abstract

Objectives: The objectives of this research is to investigate the physicomechanical characteristics of okra bast fibres (OBF) as well as to go through all the process to make this okra fibre as one of the commercial cellulosic fibres which can be used in different textile applications such as reinforcements in polymer matrix composites, carpets, materials used for absorbing oils and liquids, packaging industries, basic textiles products, coarse decorative textile products, Geo-textiles etc. all over the world. Methodology: In this work, OBFs are characterized by using Fourier transform infrared spectroscopy (FTIR), Breaking strength and breaking extension test, linear density analysis, Microscopic view and Scanning electron microscopy (SEM) analysis, and the crystallinity is measured by X-Ray Diffraction (XRD) data. Findings: XRD data indicates that the amorphous region is far greater than the crystalline region in OBFs, SEM analysis displays the technical fibres are overlapped and cemented by non-cellulosic compounds. These test results show a great similarity to other bast fibres properties mainly physical, mechanical, microstructural (crosssectional and longitudinal view) properties.

Keywords: Okra bast fibre (OBF); SEM; FTIR; XRD; Breaking strength and breaking extension; Linear density

References

  1. Ebele CC, Okonkwo, Ugochukwu C, Bright, Oweziem U, Chidiebere M. Effects of Chemical Treatment on Impact Property of Coir Fibre Reinforced Polyester (CFRP) Composites. American Journal of Engineering. 2015;2(5):125–130.
  2. Omrani E, Menezes PL, Rohatgi PK. State of the art on tribological behavior of polymer matrix composites reinforced with natural fibers in the green materials world. Engineering Science and Technology, an International Journal. 2016;19(2):717–736. Available from: https://dx.doi.org/10.1016/j.jestch.2015.10.007
  3. Onyedum O, Aduloju SC, Sheidu, Sumaila O, Metu, Chidiebere S, et al. Comparative Mechanical Analysis of Okra Fibre and Banana Fibre Composite Used in Manufacturing Automotive Car Bumpers. American Journal of Engineering. 2015;2(5):193–199.
  4. Binalfew T, A, Y. Characterization of Okra (Abelmoschus esculentus (L.) Moench) Germplasms Collected from Western Ethiopia. International Journal of Research in Agriculture and Forestry. 2016;3(2):11–17.
  5. Yılmaz ND, Konak S, Yılmaz K, Kartal AA, Kayahan E. Characterization, modification and use of biomass: okra fibers. Bioinspired, Biomimetic and Nanobiomaterials. 2016;5:85–95. Available from: https://dx.doi.org/10.1680/jbibn.15.00014
  6. Jahan MS, Alam D, Rahman MM, Quaiyyum MA. Isolation and characterization of lignin from okra (Abelmoschus esculentus) fibre and stick. Bangladesh Journal of Scientific and Industrial Research. 2015;50(4):257–262. Available from: https://dx.doi.org/10.3329/bjsir.v50i4.25834
  7. Khan GMA, Shaheruzzaman M, Rahman MH, Razzaque SMA, Islam MS, Alam MS. Surface modification of okra bast fiber and its physico-chemical characteristics. Fibers and Polymers. 2009;10(1):65–70. Available from: https://dx.doi.org/10.1007/s12221-009-0065-1
  8. Khan GMA, Yilmaz ND, Yilmaz K. OBFs: Potential material for green biocomposites. In: Green biocomposites. (pp. 261-284) Springer, Cham. 2007.
  9. Yilmaz ND. Agro-residual fibres as potential reinforcement elements for biocomposites. Lignocellulosic Polymer Composites: Processing, Characterization, and Properties. 2014;p. 233.
  10. Rosa IMD, Kenny JM, Puglia D, Santulli C, Sarasini F. Morphological, thermal and mechanical characterization of okra (Abelmoschus esculentus) fibres as potential reinforcement in polymer composites. Composites Science and Technology. 2010;70(1):116–122. Available from: https://dx.doi.org/10.1016/j.compscitech.2009.09.013
  11. Srinivasababu N, Rao M, Murail K, Kumar JS, . Tensile properties characterization of okra woven fibre reinforced polyester composites. International Journal of Engineering. 2009;3(4):403–412. Available from: https://www.cscjournals.org/library/manuscriptinfo.php?mc=IJE-103
  12. Potluri R, Paul KJ, kalam SA, Prasanthi P. Mechanical Properties Characterization of Okra Fiber Based Green Composites & Hybrid Laminates. Materials Today: Proceedings. 2017;4(2):2893–2902. Available from: https://dx.doi.org/10.1016/j.matpr.2017.02.170
  13. Rahman, Masudur ANM, Shah A, Amin KR, Ershad KM, Nazmul HS. Fabrication, Mechanical Characterization and Interfacial Properties of Okra Fibre Reinforced Polypropylene Composites. 2018.
  14. Rao K, Venkateswara.
  15. Gowda TM, Naidu ACB, Chhaya R. Some mechanical properties of untreated jute fabric-reinforced polyester composites. Composites Part A: Applied Science and Manufacturing. 1999;30(3):277–284. Available from: https://dx.doi.org/10.1016/s1359-835x(98)00157-2
  16. Hassan MM, Islam MR, Khan MA. Surface Modification of Cellulose by Radiation Pretreatments with Organo-Silicone Monomer. Polymer-Plastics Technology and Engineering. 2005;44(5):833–846. Available from: https://dx.doi.org/10.1081/pte-200060836
  17. Islam T, Khan RA, Khan MA, Rahman MA, Fernandez-Lahore M, Huque QMI, et al. Physico-Mechanical and Degradation Properties of Gamma-Irradiated Biocomposites of Jute Fabric-Reinforced Poly(caprolactone) Polymer-Plastics Technology and Engineering. 2009;48(11):1198–1205. Available from: https://dx.doi.org/10.1080/03602550903149169
  18. Srinivasababu N. An Overview of Okra Fibre Reinforced Polymer Composites. IOP Conference Series: Materials Science and Engineering. 2015;83. Available from: https://dx.doi.org/10.1088/1757-899x/83/1/012003
  19. Rahman MMM. 35—A Study By Scanning Electron Microscopy of The Progressive Delignification of Jute Fibres. The Journal of The Textile Institute. 1978;69(9):287–293. Available from: https://dx.doi.org/10.1080/00405007808631457
  20. Acha BA, Marcovich NE, Reboredo MM. Physical and mechanical characterization of jute fabric composites. Journal of Applied Polymer Science. 2005;98(2):639–650. Available from: https://dx.doi.org/10.1002/app.22083
  21. Khan MAS, Arifuzzaman GM. Chemical Analysis of Okra Bast Fibre (Abelmoschus esculentus) and Its Physico-chemical properties. Journal of Textile and Apparel. 2007;5(4):1–9.
  22. Shahinur S, Hasan M, Ahsan Q, Saha DK, Islam MS. Characterization on the Properties of Jute Fiber at Different Portions. International Journal of Polymer Science. 2015;2015:1–6. Available from: https://dx.doi.org/10.1155/2015/262348
  23. Fortunati E, Puglia D, Monti M, Santulli C, Maniruzzaman M, Foresti ML, et al. Okra (Abelmoschus esculentus) Fibre Based PLA Composites: Mechanical Behaviour and Biodegradation. Journal of Polymers and the Environment. 2013;21(3):726–737. Available from: https://dx.doi.org/10.1007/s10924-013-0571-5
  24. Zhang H, Liu T, Wang Y, Liu Hf, Zhang Jt, Wu Ys, et al. Laparoscopic left hepatectomy in swine: a safe and feasible technique. Journal of Veterinary Science. 2014;15. Available from: https://dx.doi.org/10.4142/jvs.2014.15.3.417
  25. Yilmaz ND, Koyundereli CG, Yilmaz K, Thakur VK, Thakur MK. Natural polysaccharides as pharmaceutical excipients. In: Handbook of Polymers for Pharmaceutical Technologies. (Vol. 3, pp. 483-516) Wiley Scrivener. 2015.
  26. Cook J, Gordon. Handbook of Textile Fibres. (pp. 719-723) Woodhead Publishing Limited. 1984.

Copyright

© 2021 Hossen et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.