• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 14, Pages: 1105-1115

Original Article

A Diagnostic approach for same looking plants for their Pharmacognosy value

Received Date:31 December 2020, Accepted Date:11 April 2021, Published Date:26 April 2021


Objective: To establish diagnostic features of same looking plants (C. gigantea and C. procera) and also to explore the diurnal influence on their Pharmacognosy values. Methodology: To meet the objectives, the characteristics of these plants were explored by macroscopic, microscopic (light microscopy), and also by physio-chemical parameters. The physiochemical analysis was performed with air dried leaves and flowers of C. gigantea and C. procera. The collected samples were used for the quantitative determination of ash value (water soluble, acid soluble and sulphate ash values), extractive values, loss on drying, swelling index, and foaming index through standard methods. The leaf and flower extracts (with different solvents) were subjected to qualitative phytochemical screening using the fluorescence test. Further, to explore the diurnal influence, the samples were plucked at different time intervals (morning, afternoon and evening) and fixed immediately for further processing. Results: It was observed that the macroscopic, microscopic and physiochemical characteristics analysed could serve as diagnostic features to distinguish these closely related species. Phytochemically, these plants are rich in constituents like carbohydrates, alkaloids, cardiac glycosides, flavonoids, saponins, phenolic compounds and terpenoids. Moreover, physio-chemical parameters with methanolic extracts provided higher bioactive constituents than other solvents. Besides this, total ash values were found to be maximum i.e. PLA (15.33 0.050%) and GFE (14.15  0.031%) than other acid insoluble and water-soluble values which were under 2-10%. Pertinently, the moisture content was found little higher in C. gigantea GLA (10.60 0.200%) and GFA (11.06 0.100) than in C. procera PLA (8.81 0.598%) and PFA (9.92 0.244, while a considerable amount of foaming content was present in both the species was less than 100. On the basis of observed pharmacognosy, C. procera was found more promising in drug prospective bioactive constituents than C. gigantea and thereby offers more contribution toward establishment of pharmacognostic profile of this medicinally effective plant species. Novelty: Our approach pays a way for the inclusion of an important factor (diurnal factor) in assessing the medical efficacy of desired plant species that could help in sampling the specific plant material with desired chemical profile and enhanced pharmacognosy potential.

Keywords: Anatomy; Ash value; Calotropis; Medicinal plants; Stomata;Trichomes


  1. Estabraq HN, Abbas MK, Salam AA. Antibacterial activity and phytochemical investigation of leaves of Calotropis procera plant in iraq by GC-MS. International journal of Pharmaceutical Science and Research. 2019;10(4):1988–1994.
  2. Gololo SS, Shai LJ, Agyei NM, Mogale MA. Effect of seasonal changes on the quantity of phytochemicals in the leaves of three medicinal plants from Limpopo province. South Africa. Journal of Pharmacognosy and Phytotherapy. 2016;8(9):168–172. Available from: https://doi.org/10.5897/JPP2016.0408
  3. Khan IN, Sarker MMI, Ajrin M. Sedative and anxiolytic effects of ethanolic extract of Calotropis gigantea (Asclepiadaceae) leaves. Asian Pacific Journal of Tropical Biomedicine. 2014;4(1):S400–S404. Available from: https://dx.doi.org/10.12980/apjtb.4.2014c1147
  4. Sharma R, Thakur SG, Sanodiya B, Savita A, Pandey M, Sharma A, et al. Therapeutic Potential of Calotropis procera: A giant milkweed. IOSR Journal of Pharmacy and Biological Sciences. 2012;4(2):42–57. doi: 10.9790/3008-0424257
  5. Pandey A, Swarnkar V, Pandey T, Srivastava P, Kanojiya S, Mishra DK, et al. Transcriptome and Metabolite analysis reveal candidate genes of the cardiac glycoside biosynthetic pathway from Calotropis procera. Scientific Reports. 2016;6(1):34464. doi: 10.1038/srep34464
  6. Aderounmu AO, Omonisi AE, Akingbasote JA, Makanjuola M, Bejide RA, Orafidiya LO, et al. Wound-Healing and Potential Anti-Keloidal Properties of the Latex of Calotropis Procera (Aiton) Asclepiadaceae in Rabbits. African Journal Traditional Complement Alternernative Medicine. 2013;10(3):574–579. Available from: http://dx.doi.org/10.4314/ajtcam.v10i3.28
  7. Al-Rowaily SL, Abd-ElGawad AM, Assaeed AM, Elgamal AM, Gendy AENGE, Mohamed TA, et al. Essential Oil of Calotropis procera: Comparative Chemical Profiles, Antimicrobial Activity, and Allelopathic Potential on Weeds. Molecules. 2020;25(21):1–19. Available from: https://dx.doi.org/10.3390/molecules25215203
  8. Awaad AA, Alkanhal HF, El-Meligy RM, Zain GM, Adri VDS, Hassan DA, et al. Anti-ulcerative colitis activity of Calotropis procera Linn. Saudi Pharmaceutical Journal. 2018;26(1):75–78. Available from: https://dx.doi.org/10.1016/j.jsps.2017.10.010
  9. Wang ZN, Wang MY, Mei WL, Han Z, Dai HF. A New Cytotoxic Pregnanone from Calotropis gigantea. Molecules. 2008;13(12):3033–3039. doi: 10.3390/molecules13123033
  10. Sharma M, Tandon S, Nayak U, Kappadi D, Rathore A, Goyal A. Calotropis gigantea extract as a potential anticariogenic agents against Streptococcus mutans: An in vivo comparative evaluation. Journal of Conservative Dentistry. 2017;20(3):174–179. Available from: https://dx.doi.org/10.4103/jcd.jcd_13_16
  11. Sharma M, Tandon S, Aggarwal V, Bhat K, Kappadi D, Chandrashekhar P. Evaluation of antibacterial activity of Calotropis gigentica against Streptococcus mutans and Lactobacillus acidophilus: An in vitro comparative study. Journal of Conservative Dentistry. 2015;18(6):457–460. Available from: https://dx.doi.org/10.4103/0972-0707.168809
  12. Rathod NR, Raghuveer I, Chitme HR, Chandra R. Free Scavenging Activity of Calotropis gigantea on Streptozotocin-Induced Diabetic Rats. Indian Journal of Pharmacuetical Science. 2009;71(6):615–621.
  13. Rathod NR, Chitme HR, Irchhaiya R, Chandra R. Hypoglycemic Effect of Calotropis Gigantea Linn. Leaves and Flowers in Streptozotocin-Induced Diabetic Rats. Oman Medical Journal. 2011;26(2):104–108. Available from: https://dx.doi.org/10.5001/omj.2011.26
  14. Parhira S, Zhu GY, Jiang RW, Liu L, Bai LP, Jiang ZH. 2′-Epi-uscharin from the Latex of Calotropis gigantea with HIF-1 Inhibitory Activity. Scientific Reports. 2015;4(1):4748. Available from: https://dx.doi.org/10.1038/srep04748
  15. Abubakar A, Haque M. Preparation of medicinal plants: Basic extraction and fractionation procedures for experimental purposes. Journal of Pharmacy And Bioallied Sciences. 2020;12(1):1–10. Available from: https://dx.doi.org/10.4103/jpbs.jpbs_175_19
  16. Unander DW, Bryan HH, Lance CJ, Mcmillan RT. Cultivation ofPhyllanthus amarus and evaluation of variables potentially affecting and the inhibition of viral DNA polymerase. Economic Botany. 1993;47(1):79–88. Available from: https://dx.doi.org/10.1007/bf02862208
  17. Sarin B, Verma N, Martín JP, Mohanty A. An Overview of Important Ethnomedicinal Herbs ofPhyllanthusSpecies: Present Status and Future Prospects. The Scientific World Journal. 2014;2014:1–12. Available from: https://dx.doi.org/10.1155/2014/839172
  18. Karimi A, Krähmer A, Herwig N, Schulz H, Hadian J, Meiners T. Variation of Secondary Metabolite Profile of Zataria multiflora Boiss. Populations Linked to Geographic, Climatic, and Edaphic Factors. Frontiers in Plant Science. 2020;11:969. Available from: https://dx.doi.org/10.3389/fpls.2020.00969
  19. Kokate CK. Practical pharmacognosy (4). (pp. 17-26) New Delhi. Vallabh Prakashan. 2010.
  20. Kokate CK. Practical pharmacognosy (1). (p. 111) New Delhi. Vallabh Prakashan. 2005.
  21. Azhagumadhavan S, Senthilkumar S, Padma M, Sasikala P, Jayaseelan T, Ganesan S. A Study on Establishment of Phytochemical Analysis of Quality Parameters and Fluorescence Analysis of Costus spicatus- rhizome extract Medicinal Plants a Well Known Tropical Folklore Medicine. Journal of Drug Delivery and Therapeutics. 2019;9(1-s):240–243. Available from: https://dx.doi.org/10.22270/jddt.v9i1-s.2329
  22. Kumar D, Gupta J, Kumar S, Arya R, Kumar T, Gupta A. Pharmacognostic evaluation of Cayratia trifolia (Linn.) leaf. Asian Pacific Journal of Tropical Biomedicine. 2012;2(1):6–10. Available from: https://dx.doi.org/10.1016/s2221-1691(11)60180-9
  23. Su D, Zhang R, Hou F, Zhang M, Guo J, Huang F, et al. Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents. BMC Complementary and Alternative Medicine. 2014;14(1):1–10. Available from: https://dx.doi.org/10.1186/1472-6882-14-9
  24. Shafqat AK, Barkatullah MI. A Pharmacognostic evaluation of the leaf of Rhus succedanea var. Himalaica. j. d hooker. African Journal of Traditional Complement Alternative Medicine. 2016;16(6):107–120. doi: 10.21010/ajtcam. v13i6.16 107
  25. Zalke A, Duraiswamy B, Gandagule U, Singh N. Pharmacognostical evaluation of Cardiospermum halicacabum Linn. leaf and stem. Ancient Science of Life. 2013;33(1):15. doi: 10.4103/0257-7941.134561
  26. Kabra A, Sharma R, Singla S, Kabra R, Baghel US. Pharmacognostic characterization of Myrica esculenta leaves. Journal of Ayurveda and Integrative Medicine. 2019;10(1):18–24. Available from: https://dx.doi.org/10.1016/j.jaim.2017.07.012
  27. Sonibare MA, Oke TA, Soladoye MO. A pharmacobotanical study of two medicinal species of Fabaceae. Asian Pacific Journal of Tropical Biomedicine. 2014;4(2):131–136. Available from: https://dx.doi.org/10.1016/s2221-1691(14)60221-5
  28. Singh P, Khosa RL, Srivastava S, Mishra G, Jha KK, Srivastava S, et al. Pharmacognostical study and establishment of quality parameters of aerial parts of Costus speciosus–a well known tropical folklore medicine. Asian Pacific Journal of Tropical Biomedicine. 2014;4(6):486–491. Available from: https://dx.doi.org/10.12980/apjtb.4.2014c1103
  29. Khan SA, MIB. PHARMACOGNOSTIC EVALUATION OF THE LEAF OF Rhus succedanea VAR. HIMALAICA. J. D HOOKER. African Journal of Traditional, Complementary and Alternative medicines. 2016;13(6):107–120. Available from: https://dx.doi.org/10.21010/ajtcam.v13i6.16
  30. Khan SA, Barkatullah MI, Ullah S. Microscopic investigations and pharmacognostic techniques used for the standardization of leaf of Rhus succedanea var. Himalaica J. D. Hook. Microscopy Research and Technique. 2019;82(12):1982–1992. Available from: https://dx.doi.org/10.1002/jemt.23367
  31. Khan SA, Barkatullah, Khan B. Anatomy, micromorphology, and physiochemical analysis of Rhus succedanea var. himalaica root. Microsc Res Tech. 83(4):424–435. doi: 10.1002/jemt.23430
  32. Su D, Zhang R, Hou F, Zhang M, Guo J, Huang F. Comparison of the free and bound phenolic profiles and cellular antioxidant activities of litchi pulp extracts from different solvents. BMC Complementary and Alternative Medicine. 2014;14(1):9. Available from: https://dx.doi.org/10.1186/1472-6882-14-9
  33. Chumbhale D, Upasani C. Pharmacognostic standardization of stems of Thespesia lampas (Cav.) Dalz & Gibs. Asian Pacific Journal of Tropical Biomedicine. 2012;2(5):357–363. Available from: https://dx.doi.org/10.1016/s2221-1691(12)60056-2
  34. Kumar D, Gupta J, Kumar S, Arya R, Kumar T, Gupta A. Pharmacognostic evaluation of Cayratia trifolia (Linn.) leaf. Asian Pacific Journal of Tropical Biomedicine. 2012;2(1):6–10. Available from: https://dx.doi.org/10.1016/s2221-1691(11)60180-9
  35. Ncube B, Finnie JF, Staden JV. Quality from the field: The impact of environmental factors as quality determinants in medicinal plants. South African Journal of Botany. 2012;82:11–20. Available from: https://dx.doi.org/10.1016/j.sajb.2012.05.009


© 2021 Najar et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.