• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 36, Pages: 1815-1822

Original Article

A Machine Learning Model for Estimation of Village Level Soil Nutrient Index

Received Date:20 April 2022, Accepted Date:30 August 2022, Published Date:22 September 2022


Objectives: To propose an innovative technique for designing an efficient and adaptive machine learning model using classifier assembly for estimating village level soil nutrient index using soil datasets. Methods: Freely available soil datasets were collected from the concerned authority of Govt. of India. These datasets were used by the proposed machine learning model designed with a classifier assembly of fifteen diverse classifiers for nutrient class identification. The performance of each classifier was evaluated in terms of five well-accepted standard metrics. The outputs of the best performing classifier were then used for estimation of village level nutrient index using modified Parker’s method. Findings: The model was applied for nutrient class identification, and estimation of the nutrient index of different villages using freely available benchmarked Soil health Card datasets provided by the Govt. of India. The empirical results depicted that for nutrient class identification, this proposed machine learning model overperformed the other existing models in terms of average accuracy score. In the case of Copper, it provided the highest average accuracy of classification (0.949) and estimation accuracy of 95.48%. For Sulphur, an average classification accuracy of 0.891 and an estimation accuracy of 90.66% were achieved. Similarly, for Zinc, an average classification accuracy of 0.883 and an estimation accuracy of 89.63% were observed. Novelty: This study suggests a novel architecture of a machine learning model using classifier assembly to estimate the village level nutrient index with the highest possible accuracy, using freely available soil datasets.

Keywords: Nutrient index; Village level soil fertility; Fertilizer management; Machine learning; Classifier assembly


  1. Barooah A, Bhattacharyya HK, Chetri KB. Assessment of Soil Fertility of Some Villages of Lahowal Block, Dibrugarh, India. International Journal of Current Microbiology and Applied Sciences. 2020;9(8):1438–1450. Available from: https://doi.org/10.20546/ijcmas.2020.908.165
  2. Shahare Y, Gautam V. Soil Nutrient Assessment and Crop Estimation with Machine Learning Method: A Survey. In: Cyber Intelligence and Information Retrieval. (Vol. 291, pp. 253-266) Springer Singapore. 2022.
  3. Sheeba B, Anand T, Manohar LD, Selvan G, Wilfred S, Muthukumar CB, et al. Machine Learning Algorithm for Soil Analysis and Classification of Micronutrients in IoT-Enabled Automated Farms. Journal of Nanomaterials. 2022;2022. Available from: https://doi.org/10.1155/2022/5343965
  4. Longchamps L, Mandal D, Khosla R. Assessment of Soil Fertility Using Induced Fluorescence and Machine Learning. Sensors. 2022;22(12):4644. Available from: https://doi.org/10.3390/s22124644
  5. Zhang S, Lu X, Zhang Y, Nie G, Li Y. Estimation of Soil Organic Matter, Total Nitrogen and Total Carbon in Sustainable Coastal Wetlands. Sustainability. 2019;11(3):667. Available from: https://doi.org/10.3390/su11030667
  6. Wang Y, Li M, Ji R, Wang M, Zheng L. Comparison of Soil Total Nitrogen Content Prediction Models Based on Vis-NIR Spectroscopy. Sensors. 2020;20(24):7078. Available from: https://doi.org/10.3390/s20247078
  7. Khanal S, Fulton J, Klopfenstein A, Douridas N, Shearer S. Integration of high resolution remotely sensed data and machine learning techniques for spatial prediction of soil properties and corn yield. Computers and electronics in agriculture. 2018;153:213–225. Available from: https://doi.org/10.1016/j.compag.2018.07.016
  8. Emadi M, Taghizadeh-Mehrjardi R, Cherati A, Danesh M, Mosavi A, Scholten T. Predicting and mapping of soil organic carbon using machine learning algorithms in Northern Iran. Remote Sensing. 2020;7(1):72–82. Available from: https://doi.org/10.3390/rs12142234
  9. Suchithra MS, Pai ML. Improving the prediction accuracy of soil nutrient classification by optimizing extreme learning machine parameters. Information Processing in Agriculture. 2020;7(1):72–82. Available from: https://doi.org/10.1016/j.inpa.2019.05.003
  10. Fageria NK. The Use of Nutrients in Crop Plants. Boca Raton, FL. CRC Press. 2016.
  11. Sharma RP, Singh SK, Chandran P, Chattaraj S. Development of soil health card (SHC) using GIS technique. Indian Farming. 2020;70:25–28.
  12. Behera B, Kumaravelan G, B. PK. Performance Evaluation of Deep Learning Algorithms in Biomedical Document Classification. 2019 11th International Conference on Advanced Computing (ICoAC). 2019. Available from: https://doi.org/10.1109/ICoAC48765.2019.246843
  13. Gopan GMV, Hasan A, Thomas T, David AA, Reddy IS. Correlation of Physico-chemical Parameters of Soil and Soil Nutrient Index Status of Kollam District. International Journal of Plant & Soil Science. 2022;34(20):270–276. Available from: http://doi.org/10.9734/IJPSS/2022/v34i2031151
  14. Kumar K, Shubha TG, Sushma C, SA. Random forest algorithm for soil fertility prediction and grading using machine learning. International Journal of Innovative Technology and Exploring Engineering. 2019;9(1):1301–1304. Available from: http://doi.org/10.35940/ijitee.L3609.119119
  15. Chaudhari R, Chaudhari S, Shaikh A, Chiloba R, Khadtare T. Soil fertility prediction using data mining techniques. Mukt. Shabd. J. 2020;9:2347–315.
  16. Pant J, Pant P, Pant RP, Bhatt A, Pant D, Juyal A. Soil Quality Prediction for Determining Soil Fertility in Bhimtal Block of Uttarakhand (India) Using Machine Learning. International Journal of Analysis and Applications. 2021;19(1):91–109.


© 2022 Sarkar et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee


Subscribe now for latest articles and news.