• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 14, Pages: 1450-1463

Original Article

A Novel Deep Convolutional Neural Network Approach using Jacobi Polynomial and Laplacian Function (JPLF) in Recognition of Plant Leaf Disease

Received Date:24 October 2023, Accepted Date:17 February 2024, Published Date:30 April 2024


Background/Objectives: Enhancing agricultural productivity is crucial for fostering economic growth. Plant diseases significantly threaten crops, necessitating timely detection to mitigate adverse impacts on quality, quantity, and overall productivity. This research addresses the importance of early disease detection in agriculture and proposes an innovative method utilizing Jacobian Polynomial and Laplacian Function for precise identification. Methods: Efficient monitoring of large-scale crop farms with minimal workforce is essential. To achieve this, an automatic method for plant disease detection is proposed. The method leverages Jacobian polynomials to expand input features, mitigating correlation issues among input vectors. The expanded Jacobi polynomial is the input vector for a backpropagation algorithm with a novel activation function based on the Laplacian function. Findings: The efficacy of the proposed JPLF model is demonstrated through the accurate identification of leaf diseases, achieving a high testing accuracy of 92.07%. Comparative analysis with existing models, such as CNN with MobileNet V2 (85.38%) and the IoU model (83.75%), highlights the superiority of the JPLF model in plant disease detection. Novelty: To overcome the limitations of existing approaches, the incorporation of Jacobian polynomials plays a pivotal role in expanding input features. This expansion aids in eliminating correlations among input vectors, enhancing the efficacy of disease detection. The proposed model, Jacobi Polynomial and Laplacian Function (JPLF) introduces a unique activation function based on the Laplacian function, improving accuracy.

Keywords: Plant Disease Detection, Jacobi Polynomial, Laplacian Transform, Deep Learning Model, Feature Expansion


  1. Esgario JGM, Krohling RA, Ventura JA. Deep learning for classification and severity estimation of coffee leaf biotic stress. Computers and Electronics in Agriculture. 2020;169:105162. Available from: https://doi.org/10.1016/j.compag.2019.105162
  2. Ozguven MM, Adem K. Automatic detection and classification of leaf spot disease in sugar beet using deep learning algorithms. Physica A: Statistical Mechanics and its Applications. 2019;535:122537. Available from: https://doi.org/10.1016/j.physa.2019.122537
  3. Ma J, Du K, Zheng F, Zhang L, Gong Z, Sun Z. A recognition method for cucumber diseases using leaf symptom images based on deep convolutional neural network. Computers and Electronics in Agriculture. 2018;154:18–24. Available from: https://doi.org/10.1016/j.compag.2018.08.048
  4. Gensheng H, Haoyu W, Yan Z, Mingzhu W. A low shot learning method for tea leaf’s disease identification. Computers and Electronics in Agriculture. 2019;163:104852. Available from: https://doi.org/10.1016/j.compag.2019.104852
  5. Coulibaly S, Kamsu-Foguem B, Kamissoko D, Traore D. Deep neural networks with transfer learning in millet crop images. Computers in Industry. 2019;108:115–120. Available from: https://doi.org/10.1016/j.compind.2019.02.003
  6. Kumar SP, Soori PK, . Image Processing And Machine Learning Approach For Tomato Leaf Disease Detection. Journal of Survey in Fisheries Sciences. 2023;10(4S):2641–2644. Available from: https://doi.org/10.17762/sfs.v10i4S.1623
  7. Ghosh H, Rahat IS, Shaik K, Khasim S, Yesubabu M. Potato Leaf Disease Recognition and Prediction using Convolutional Neural Networks. EAI Endorsed Transactions on Scalable Information Systems. 2023;10(6):1–8. Available from: https://doi.org/10.4108/eetsis.3937
  8. Chug A, Bhatia A, Singh AP, Singh D. A novel framework for image-based plant disease detection using hybrid deep learning approach. Soft Computing. 2023;27(18):13613–13638. Available from: https://doi.org/10.1007/s00500-022-07177-7
  9. Methkal Y, Algani A, Caro OJM, Bravo LMR, Kaur C, Ansari MSA, et al. Leaf disease identification and classification using optimized deep learning. Measurement: Sensors. 2023;25:1–6. Available from: https://doi.org/10.1016/j.measen.2022.100643
  10. Gardie B, Azezew K, Asemie S. Image-based Tomato Disease Identification Using Convolutional Neural Network. Indian Journal of Science and Technology. 2021;14(42):3126–3132. Available from: https://doi.org/10.17485/IJST/v14i42.1164
  11. Tiwari D, Ashish M, Gangwar NM, Sharma A, Patel S, Bhardwaj S. Potato Leaf Diseases Detection Using Deep Learning. In: 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS). (pp. 461-466) IEEE. 2020.
  12. Kaya A, Keceli AS, Catal C, Yalic HY, Temucin H, Tekinerdogan B. Analysis of transfer learning for deep neural network based plant classification models. Computers and Electronics in Agriculture. 2019;158:20–29. Available from: https://doi.org/10.1016/j.compag.2019.01.041
  13. Fine TL. Feedforward Neural Network Methodology, Information Science and Statistics (1). (p. XVI, 340) New York, NY, USA. Springer . 1999.
  14. Chihara TS. An introduction to orthogonal polynomials (1). New York, USA. Gordon and BreachScience Publishers, Inc. 1978.
  15. Witten IH, Frank E, Hall MA, Pal CJ. Practical Machine Learning Tools and Techniques. In: Data Mining. (Vol. 2) Morgan Kaufmann. 2016.
  16. Chen J, Liu Q, Gao L. Visual Tea Leaf Disease Recognition Using a Convolutional Neural Network Model. Symmetry. 2019;11(3):1–13. Available from: https://doi.org/10.3390/sym11030343
  17. Xian TS, Ngadiran R. Plant Diseases Classification using Machine Learning. In: The 1st International Conference on Engineering and Technology (ICoEngTech) 2021, Journal of Physics: Conference Series. (Vol. 1962, pp. 1-12) IOP Publishing. 2021.
  18. Guo Y, Zhang J, Yin C, Hu X, Zou Y, Xue Z, et al. Plant Disease Identification Based on Deep Learning Algorithm in Smart Farming. Discrete Dynamics in Nature and Society. 2020;2020:1–11. Available from: https://doi.org/10.1155/2020/2479172
  19. Bhange M, Hingoliwala HA. Smart Farming: Pomegranate Disease Detection Using Image Processing. Procedia Computer Science. 2015;58:280–288. Available from: https://doi.org/10.1016/j.procs.2015.08.022
  20. Lee SH, Chan CS, Mayo SJ, Remagnino P. How deep learning extracts and learns leaf features for plant classification. Pattern Recognition. 2017;71:1–13. Available from: https://doi.org/10.1016/j.patcog.2017.05.015


© 2024 Janes & Chithra. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.