• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 37, Pages: 3950-3959

Original Article

An extension of grey relational analysis for intuitionistic and interval-valued intuitionistic fuzzy soft sets

Received Date:27 August 2020, Accepted Date:24 September 2020, Published Date:21 October 2020


Objectives: Neither any analytical (or numerical) nor any statistical approach is often helpful in these situations due to the reason that every person has his/her own choice. To cope with such situations usually we have to use fuzzy sets in combination with soft sets, which consist of predicates and approximate value sets as their images. Material: Choice values and comparison table techniques are two common decision-making techniques, which often don’t result in same preference order or optimal choice. To overcome this kind of situation in decision-making problems, grey relational analysis method is used to get on a final decision. Method: Here we have used grey relational analysis method involving “intuitionistic fuzzy soft set” and “interval-valued intuitionistic fuzzy soft set” and “AND operation” to deal with such kind of problems. Findings: The proposed method is effective in seeking on an optimal choice in the case when common decision-making techniques fail to get on a final decision. Novelty: By using grey relational analysis, a suitable method to choose one object from different choices has been proposed. It overcome the greyness in decisionmaking problems for getting on a final decision when one gets too many options and finds it difficult to choose an optimal choice.

Keywords: Fuzzy soft set; intuitionistic fuzzy soft set; grey relational analysis; interval-valued intuitionistic fuzzy soft set


  1. Weaver W. Science and Complexity. Classical Papers-Science and Complexity. 2004;6(3):65–74. Available from: https://doi.org/1007/978-1-4899-0718-9_30
  2. Zadeh LA. Fuzzy sets. Information and Control. 1965;8(3):338–353. Available from: https://dx.doi.org/10.1016/s0019-9958(65)90241-x
  3. Molodtsov D. Soft set theory—First results. Computers & Mathematics with Applications. 1999;37(4-5):19–31. Available from: https://dx.doi.org/10.1016/s0898-1221(99)00056-5
  4. Molodtsov D. The theory of soft sets, URSS publishers. Moscow. URSS publishers. 2004.
  5. Maji PK, Biswas R, Roy AR. Fuzzy soft sets. An application of soft sets in a decision making problem. Computer and Mathematics with applications. 2002;44(8-9):1077–1083. Available from: https://doi.org/10.1016/S0898-1221(02)216-X
  6. Roy AR, Maji PK. A fuzzy soft set theoretic approach to decision making problems. Journal of Computational and Applied Mathematics. 2007;203(2):412–418. Available from: https://dx.doi.org/10.1016/j.cam.2006.04.008
  7. Maji PK, Biswas R, Roy AR. Soft set theory. Computers & Mathematics with Applications. 2003;45(4-5):555–562. Available from: https://dx.doi.org/10.1016/s0898-1221(03)00016-6
  8. Maji PK, Biswas R, Roy AR. Fuzzy soft sets. The Journal of Fuzzy Soft Mathematics. 2001;9(3):589–602.
  9. Kong Z, Gao L, Wang L. A fuzzy soft set theoretic approach to decision making problems. Journal Computational and Applied Mathematics. 2009;223(2):540–542. Available from: https://doi.org/1016/j.cam.2008.01.011
  10. Cagman N, Engionglu S. Soft set theory and Uni-Int decision making. European journal of Operational Research. 2010;207:848–855. Available from: https://doi.org/10.1016/j.ejor2010.05.004
  11. Jiang Y, Tang Y, Chen Q. An adjustable approach to intuitionistic fuzzy soft sets based decision making. Journal of Computational and Applied Mathematics Model. 2011;35:824–836. Available from: https://doio.org/10.1016/j.apm.2010.07.038
  12. Jiang Y, Tang Y, Chen Q, Liu H, Tang J. Interval-valued intuitionistic fuzzy soft sets and their properties. Computers and Mathematics with applications. 2010;60(3):906–916. Available from: https://doi.org/10.1016/j.camwa.2010.05.036
  13. Feng F, Jun YB, Liu X, Li L. An adjustable approach to fuzzy soft sets based decision making. Journal of Computational and Applied Mathematics. 2010;234(1). Available from: https://doi.org/10.1016/j.cam.2009.11.055
  14. Feng F, Li Y, Leoreanu-Fotea V. Application of level soft sets in decision making based on interval-valued fuzzy soft sets. Computers & Mathematics with Applications. 2010;60(6):1756–1767. Available from: https://dx.doi.org/10.1016/j.camwa.2010.07.006
  15. Yang X, Lin TY, Yang J, Li Y, Yu D. Combination of interval-valued fuzzy soft sets and soft set. Computers and Mathematics with applications. 2009;58(3):521–527. Available from: https://doi.org/10.1016/j.cam.2009.04.019
  16. Majumdar P, Samanta SK. Generalised fuzzy soft sets. Computers & Mathematics with Applications. 2010;59(4):1425–1432. Available from: https://dx.doi.org/10.1016/j.camwa.2009.12.006
  17. Zhan J, Jun YB. Soft BL-algebras based on fuzzy soft sets. Computers and Mathematics with Applications. 2010;59(6):2037–2046. Available from: https://doi.org/10.1016/j.camwa.2009.12.008
  18. Xu W, Ma J, Wang S, Hao G. Vague soft sets and their properties. Computers & Mathematics with Applications. 2010;59(2):787–794. Available from: https://dx.doi.org/10.1016/j.camwa.2009.10.015
  19. Ali MI, Feng F, Liu X, Min WK, Shabir M. On some new operations in soft set theory. Computers & Mathematics with Applications. 2009;57(9):1547–1553. Available from: https://dx.doi.org/10.1016/j.camwa.2008.11.009
  20. Kong Z, Gao L, Wang L, Li S. The normal parameters reduction of soft sets and its algorithm. Computers and Mathematics with Applications. 2008;56(12):3029–3037. Available from: https://doi.org/10.1016/j.camwa.2008.07.013
  21. Kong Z, Wang L, Wu Z. Application of Fuzzy soft set in decision making problems based on grey relational Analysis. Journal of Computational and Mathematics. 2011;236:1521–1530. Available from: https://doi.org/10.1016/j.cam.2011.09.01.6
  22. Touqeer M, Jabeen S, R. Irfan: A grey relational projection method for multi attribute decision making based on three trapezoidal fuzzy numbers. Journal of Intelligence and Fuzzy System. 2020;38:5957–5967. Available from: https://doi.org/10.3233/JIFS-179682
  23. Touqeer M, Hafeez A, Arshad M. Multi attribute decision making using grey relational projection method based on interval type-2 trapezoidal fuzzy numbers. Journal of Intelligence and Fuzzy System. 2020;38:5979–5986. Available from: https://doi.org/10.3233/JIFS-179684
  24. Touqeer M, Shaheen K, Irfan R. Evaluation model for manufacturing plants with linguistic information in terms of three trapezoidal fuzzy numbers. Journal of Intelligent & Fuzzy Systems. 2020;38(5):5969–5978. Available from: https://dx.doi.org/10.3233/jifs-179683
  25. Touqeer MN, Saeed MN, Salamt M. Mustahsan: An extension of grey relational analysis for interval-valued fuzzy soft sets. Indian Journal of Science and Technology. 2020;13(31):3176–3187. Available from: https://doi.org/10.17485/IJST/v13i31.115


© 2020 Touqeer et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).


Subscribe now for latest articles and news.