• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 41, Pages: 2182-2187

Original Article

Analysis of Peak to Average Power in the 5G NOMA-FBMC Waveform

Received Date:22 July 2022, Accepted Date:15 September 2022, Published Date:08 November 2022

Abstract

Objectives: In this work, we investigate suitable techniques to reduce the Peak to Average Power Ratio (PAPR) for advanced modulation schemes in order to obtain better performance than current or commonly used modulation schemes for Fourth Generation (4G) and Fifth Generation (5G). Methods: The proposed scheme incorporates a combination of Selective Mapping (SLM) and Partial Transmission Scheme (PTS) and thereby efficiently minimizes the PAPR and the complexity of the framework. Further, it is seen that the proposed algorithm is crucial to achieving better spectral and power characteristics compared with the existing waveforms. Findings: The comparative results of the bit error rate (BER) and PAPR of the advanced SLM-PTS when applied to the OFDM, FBMC, NOMA, and NOMA-FBMC structures are shown, and it is found that the power and complexity are significantly decreased in the advanced waveforms, which makes the proposed algorithm efficient for the advanced waveforms. Novelty: A natural motivation for future modulation schemes is to harmoniously merge the newer modulation technique, Filter Bank Multi Carrier (FBMC), with the Non-Orthogonal Multiple Access (NOMA) framework. This has led to a recent modulation paradigm called FBMC-NOMA, wherein the NOMA power domain principle is applied to a group of FMBC modulated signals. The proposed SLM-PTS-based NOMA-FBMC structure efficiently enhances the throughput and PAPR performance for 5G and beyond 5G systems. Keywords: PAPR; FBMC; SLM; PTS; NOMA

References

  1. Agiwal M, Kwon H, Park S, Jin H. A Survey on 4G-5G Dual Connectivity: Road to 5G Implementation. IEEE Access. 2021;9(1):16193–16210. Available from: https://doi.org/10.1109/ACCESS.2021.3052462
  2. Cheng X, Liu D, Shi W, Zhao Y, Li Y, Kong D. A Novel Conversion Vector-Based Low-Complexity SLM Scheme for PAPR Reduction in FBMC/OQAM Systems. IEEE Transactions on Broadcasting. 2020;66(3):656–666. Available from: https://doi.org/10.1109/TBC.2020.2977548
  3. Park T, Lee G, Saad W, Bennis M. Sum Rate and Reliability Analysis for Power-Domain Nonorthogonal Multiple Access (PD-NOMA) IEEE Internet of Things Journal. 2021;8(12):10160–10169. Available from: https://doi.org/10.1109/JIOT.2021.3050990
  4. Boontra P, Mata T, Dataesatu A, Mori K, Boonsrimuang P. A PAPR Reduction for FBMC-OQAM Signals using ABC-OPTS Scheme. In: 21st International Conference on Advanced Communication Technology (ICACT). IEEE. p. 115–119.
  5. Li X, Wang D, Li Z, Bai W, Hu X, Fu R. A Hybrid TSLM and A-Law Companding Scheme for PAPR Reduction in FBMC-OQAM Systems. IEEE. p. 1077–1081.
  6. Thota S, Kamatham Y, Paidimarry CS. Analysis of Hybrid PAPR Reduction Methods of OFDM Signal for HPA Models in Wireless Communications. IEEE Access. 2020;8(1):22780–22791. Available from: https://doi.org/10.1109/ACCESS.2020.2970022
  7. Liu X, Li Y, Hu L, Ding L, Yang F. An Improved Tone Reservation Method for PAPR Reduction in FBMC-OQAM System. 2019 IEEE MTT-S International Wireless Symposium (IWS). 2019;p. 1–3.
  8. Almutairi AF, Al-Gharabally M, Krishna A. Performance Analysis of Hybrid Peak to Average Power Ratio Reduction Techniques in 5G UFMC Systems. IEEE Access. 2019;7:80651–80660.
  9. Harthi MA, Zhang NA, Choi Z, Papr SFO. FBMC-OQAM PAPR Reduction Schemes. In: Int Conf ICT Converg. p. 148–150.
  10. Sayyari R, Pourrostam J, Ahmadi H. Efficient PAPR reduction scheme for OFDM-NOMA systems based on DSI & precoding methods. Physical Communication. 2021;47:101372. Available from: https://doi.org/10.1016/j.phycom.2021.101372
  11. Li X, Wang D, Li Z, Bai W, Hu X, Fu R, et al. A Hybrid TSLM and A-Law Companding Scheme for PAPR Reduction in FBMC-OQAM Systems. In: Int Wirel Commun Mob Comput IWCMC. p. 1077–1081.
  12. Prasad S, Jayabalan R. PAPR Reduction in OFDM Systems Using Modified SLM with Different Phase Sequences. Wireless Personal Communications. 2020;110(2):913–929. Available from: https://doi.org/10.1007/s11277-019-06763-7
  13. Kumar A, Rajagopal K, Gugapriya G, Sharma H, Gour N, Masud M, et al. Reducing PAPR with Low Complexity Filtered NOMA Using Novel Algorithm. Sustainability. 2022;14(15):9631.
  14. Al-Rayif MI, Seleem HE, Ragheb AM, Alshebeili SA. PAPR Reduction in UFMC for 5G Cellular Systems. Electronics. 2020;9(9):1404.
  15. Gokceli S, Levanen T, Riihonen T, Renfors M, Valkama M. Frequency-Selective PAPR Reduction for OFDM. IEEE Transactions on Vehicular Technology. 2019;68(6):6167–6171. Available from: https://doi.org/10.1109/TVT.2019.2909643

Copyright

© 2022 Sharma & Kumar. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.