• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 47, Pages: 4504-4511

Original Article

Anti-Tuberculosis and Molecular Docking Study of – Rhizomes of Curcuma caesia

Received Date:24 November 2023, Accepted Date:08 December 2023, Published Date:20 December 2023

Abstract

Objective: To isolate and evaluate bioactive compounds from Curcuma caesia rhizomes for its novel potential anti-tuberculosis agents. Methods: Curcuma caesia rhizomes were meticulously collected and authenticated. Phytochemical screening and GC-MS analyses were conducted to identify the chemical constituents of the plant. Isolation of a bioactive phytoconstituent was achieved, followed by the characterization using HPLC, TLC, and FTIR techniques. The isolated compound was then subjected to biological evaluation, including anti-tuberculosis activity assessment and MTT assay, revealing its potential as a novel anti-tuberculosis agent. Findings: Alkaloids, flavonoids, phytosterols, saponins, and phenolics were identified among the chemical components in the early phytochemical screening. Bioactive compounds were extracted using methanol, and the compound, (+)-3-Bromocamphor-8-Sulfonic Acid Ammonium Salts, showed positive for anti-tuberculosis agent. In silico docking studies of isolated compounds and proteins showed conventional hydrogen bonds with 8hcr 5sxf. The compound adheres to Lipinski’s rule of five, suggesting its potential as a drug-like molecule. Novelty: The isolation of novel (+)-3-Bromocamphor-8-sulfonic acid ammonium salts showed a potential anti-tuberculosis role that can act against drug-resistant strains of Mycobacterium tuberculosis. Adherence to Lipinski's rule of five suggests that it is a drug-like molecule, emphasizing its potential for further drug development.

Keywords: Curcuma caesia, (+)­3­Bromocamphor­8­Sulfonic Acid Ammonium Salts, Antitubercular activity, Mycobacterium tuberculosis, MTT assay

References

  1. Barua N, Buragohain AK. Therapeutic Potential of Curcumin as an Antimycobacterial Agent. Biomolecules. 2021;11(9):1–13. Available from: https://doi.org/10.3390/biom11091278
  2. Alsayed SSR, Gunosewoyo H. Tuberculosis: Pathogenesis, Current Treatment Regimens and New Drug Targets. International Journal of Molecular Sciences. 2023;24(6):1–23. Available from: https://doi.org/10.3390/ijms24065202
  3. Obeagu EI, Onuoha EC. Tuberculosis among HIV Patients: A review of Prevalence and Associated Factors. International Journal of Advanced Research in Biological Sciences. 2023;10(9):128–134. Available from: https://ijarbs.com/pdfcopy/2023/sept2023/ijarbs14.pdf
  4. Mancuso G, Midiri A, Gaetano SD, Ponzo E, Biondo C. Tackling Drug-Resistant Tuberculosis: New Challenges from the Old Pathogen Mycobacterium tuberculosis. Microorganisms. 2023;11(9):1–16. Available from: https://doi.org/10.3390/microorganisms11092277
  5. Weldemhret L, Atsbaha AH, Bekuretsion H, Desta A, Legesse L, Kahsay AG, et al. Time to Sputum Culture Conversion and Its Predictors Among Multidrug Resistant Tuberculosis Patients in Tigray, Northern Ethiopia: Retrospective Cohort Study. Infection and Drug Resistance. 2023;16:3671–3681. Available from: https://doi.org/10.2147/IDR.S413495
  6. Sharma P, Bajaj S, Fuloria S, Porwal O, Subramaniyan V, ozdemir M, et al. Ethnomedicinal and pharmacological uses of Curcuma caesia. NVEO-natural volatiles & essential oils. 2021;8(4):14902–14910. Available from: https://eprints.tiu.edu.iq/894/1/document%20%284%29.pdf
  7. Paw M, Munda S, Borah A, Pandey SK, Lal M. Estimation of variability, genetic divergence, correlation studies of Curcuma caesia Roxb. Journal of Applied Research on Medicinal and Aromatic Plants. 2020;17:100251. Available from: https://doi.org/10.1016/j.jarmap.2020.100251
  8. Mahanta BP, Lahon D, Kalita D, Lal M, Haldar S. Study on aroma-profile, key odorants and ontogenetic variability of black turmeric (Curcuma caesia Roxb.) essential oil: An aroma perspective. Industrial Crops and Products. 2023;193:116115. Available from: https://doi.org/10.1016/j.indcrop.2022.116115
  9. Benya A, Mohanty S, Hota S, Das AP, Rath CC, Achary KG, et al. Endangered Curcuma caesia Roxb.: Qualitative and quantitative analysis for identification of industrially important elite genotypes. Industrial Crops and Products. 2023;195:116363. Available from: https://doi.org/10.1016/j.indcrop.2023.116363
  10. Reddy S, Rashed K, Marnewick JL, Rautenbach FG, Koekemoer T, Venter MVD. Cyclopia intermedia E. Mey protects against ROS-induced liver injury in HepG2/C3A cells. South African Journal of Botany. 2023;162:794–803. Available from: https://doi.org/10.1016/j.sajb.2023.09.048
  11. Mangwani N, Singh PK, Kumar V. Medicinal plants: Adjunct treatment to tuberculosis chemotherapy to prevent hepatic damage. Journal of Ayurveda and Integrative Medicine. 2020;11(4):522–528. Available from: https://doi.org/10.1016/j.jaim.2019.02.004
  12. El-Hack MEA, El-Saadony MT, Swelum AA, Arif M, Ghanima MMA, Shukry M, et al. Curcumin, the active substance of turmeric: its effects on health and ways to improve its bioavailability. Journal of the Science of Food and Agriculture. 2021;101(14):5747–5762. Available from: https://doi.org/10.1002/jsfa.11372
  13. Das P, Nayak A, KB, D, R, MA. Molecular Modelling Technique on Interactivity between Human Carbonic Anhydrase 1 and Mangiferin for Antiulcer activity. Research Journal of Pharmacy and Technology. 2023;16(5):2465–2469. Available from: https://doi.org/10.52711/0974-360X.2023.00406
  14. Zohmachhuana A, Malsawmdawngliana, Lalnunmawia F, Mathipi V, Lalrinzuali K, Kumar NS. Curcuma aeruginosa Roxb. exhibits cytotoxicity in A-549 and HeLa cells by inducing apoptosis through caspase-dependent pathways. Biomedicine & Pharmacotherapy. 2022;150:1–13. Available from: https://doi.org/10.1016/j.biopha.2022.113039
  15. Das P, Nayak A, Kiruba AA, Dechan, Padmapprabhu, Preethi K, et al. Antibacterial activity and molecular docking study of Coptis teeta. Herba Polonica. 2023;69(2):1–8. Available from: https://doi.org/10.5604/01.3001.0053.6132
  16. Atom RS, Shaikh SAM, Laitonjam WS, Ninghthoujam RS, Kunwar A. Phytochemical profiling of petroleum ether and chloroform extracts of Curcuma caesia rhizome by GC-MS and comparing their bioactivities. Journal of Spices and Aromatic Crops. 2021;30(2):183–195. Available from: https://doi.org/10.25081/josac.2021.v30.i2.7263
  17. Li HY, Yang WQ, Zhou XZ, Shao F, Shen T, Guan HY, et al. Antibacterial and Antifungal Sesquiterpenoids: Chemistry, Resource, and Activity. Biomolecules. 2022;12(9):1–27. Available from: https://doi.org/10.3390/biom12091271
  18. Baldin VP, Scodro RBDL, Fernandez CMM, Ieque AL, Caleffi-Ferracioli KR, Siqueira VLD, et al. Ginger essential oil and fractions against Mycobacterium spp. Journal of Ethnopharmacology. 2019;244:112095. Available from: https://doi.org/10.1016/j.jep.2019.112095
  19. Gräb J, Suárez I, Gumpel EV, Winter S, Schreiber F, Esser A, et al. Corticosteroids inhibit Mycobacterium tuberculosis-induced necrotic host cell death by abrogating mitochondrial membrane permeability transition. Nature Communications. 2019;10(1):1–14. Available from: https://doi.org/10.1038/s41467-019-08405-9
  20. Dian S, Ganiem AR, Laarhoven Av. Central nervous system tuberculosis. Current Opinion in Neurology. 2021;34(3):396–402. Available from: https://doi.org/10.1097/WCO.0000000000000920
  21. Kuete V, Omosa LK, Midiwo JO, Karaosmanoğlu O, Sivas H. Cytotoxicity of naturally occurring phenolics and terpenoids from Kenyan flora towards human carcinoma cells. Journal of Ayurveda and Integrative Medicine. 2019;10(3):178–184. Available from: https://doi.org/10.1016/j.jaim.2018.04.001

Copyright

© 2023 Das et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.