• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 30, Pages: 1466-1472

Original Article

Assessment of Impact of Climate Change in the Western Ghats Region, India

Received Date:15 April 2022, Accepted Date:02 July 2022, Published Date:06 August 2022


Objectives: The current research assessed the patterns of precipitation and discharge in the Sagar and Kokkarne catchments in the Western Ghats of Karnataka. Methods: Soil and Water Assessment Tool (SWAT) model was used to find the discharge at the outlets of the catchments. The yearly precipitation and discharge patterns of both the catchments were studied using data from observed data (1991 to 2020) and the projected data (2021-2050). Considering the IMD data (1991-2020) as the reference data, the percentage change in precipitation and discharge were calculated. Findings: For the Sagar catchment, the maximum percentage change in precipitation and discharge were projected to be 24.79 % and 53.71 %, and the minimum percentage change in precipitation and discharge were projected to be -20.29 % and -41.65 %. For the Kokkarne catchment, the maximum percentage change in precipitation and discharge were projected to be 31.30 % and 42.92 %, and the minimum percentage change in precipitation and discharge were projected to be -18.22 % and -16.98 %. In both the catchments, the increase or decrease in precipitation has led to corresponding changes in the discharge of the catchment. Novelty: This present work tries to project and compare the precipitation and discharge patterns in two catchments belonging to two varied river flow regimes in the Western Ghats of Karnataka to establish how the changing climate is affecting the hydrology of the catchments. As the precipitation varies in intensity throughout time and space and Indian agriculture relies heavily on precipitation, the present study can help in formulating water resource management techniques.

Keywords: Western Ghats; Hydrological Cycle; IPCC; SWAT model; Lockdown; Vaccination


  1. Hosseinzadehtalaei P, Tabari H, Willems P. Climate change impact on short-duration extreme precipitation and intensity–duration–frequency curves over Europe. Journal of Hydrology. 2020;590:125249. Available from: https://doi.org/10.1016/j.jhydrol.2020.125249
  2. Abatzoglou JT, Williams AP, Barbero R. Global Emergence of Anthropogenic Climate Change in Fire Weather Indices. Geophysical Research Letters. 2019;46(1):326–336. Available from: https://doi.org/10.1029/2018GL080959
  3. Koutsoyiannis D. Revisiting the global hydrological cycle: is it intensifying? . Hydrology and Earth System Sciences. 2020;24:3899–3932. Available from: https://doi.org/10.5194/hess-24-3899-2020
  4. Nie Y, Pritchard HD, Liu Q, Hennig T, Wang W, Wang X, et al. Glacial change and hydrological implications in the Himalaya and Karakoram. Nature Reviews Earth & Environment. 2021;2(2):91–106. Available from: https://doi.org/10.1038/s43017-020-00124-w
  5. Gao J, Sheshukov AY, Yen H, Douglas-Mankin KR, White MJ, Arnold JG. Uncertainty of hydrologic processes caused by bias-corrected CMIP5 climate change projections with alternative historical data sources. Journal of Hydrology. 2019;568:551–561. Available from: https://doi.org/10.1016/j.jhydrol.2018.10.041
  6. Galavi H, Kamal MR, Mirzaei M, Ebrahimian M. Assessing the contribution of different uncertainty sources in streamflow projections. Theoretical and Applied Climatology. 2019;137(1-2):1289–1303. Available from: https://doi.org/10.1007/s00704-018-2669-0
  7. Bhadoriya UPS, Mishra A, Singh R, Chatterjee C. Implications of climate change on water storage and filling time of a multipurpose reservoir in India. Journal of Hydrology. 2020;590:125542. Available from: https://doi.org/10.1016/j.jhydrol.2020.125542
  8. Ndhlovu GZ, Woyessa YE. Modelling impact of climate change on catchment water balance, Kabompo River in Zambezi River Basin. Journal of Hydrology: Regional Studies. 2020;27:100650. Available from: https://doi.org/10.1016/j.ejrh.2019.100650
  9. Arnold JG, Moriasi DN, Gassman PW, Abbaspour KC, White MJ, Srinivasan R. SWAT: Model use, calibration, and validation. Transactions of the ASABE. 2012;55(4):1491–1508. Available from: https://doi.org/10.13031/2013.42256
  10. Buonocore C, Pascual JJG, Cayeiro MLP, Salinas RM, Mejías MB. Modelling the impacts of climate and land use changes on water quality in the Guadiana basin and the adjacent coastal area. Science of The Total Environment. 2021;776:146034. Available from: https://doi.org/10.1016/j.scitotenv.2021.146034
  11. Neitsch SL, Arnold JG, Kiniry JR, Williams JR. Soil and water assessment tool theoretical documentation version. Available from: https://oaktrust.library.tamu.edu/bitstream/handle/1969.1/128050/TR- (accessed )
  12. Jaiswal RK, Yadav RN, Lohani AK, Tiwari HL, Yadav SN. Water balance modeling of Tandula (India) reservoir catchment using SWAT. Arabian Journal of Geosciences. 2020;13(4):1–13. Available from: https://doi.org/10.1007/s12517-020-5092-7
  13. Griensven AV, Meixner T, Grunwald S, Bishop T, Diluzio M, Srinivasan R. A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology. 2006;324(1-4):10–23. Available from: https://doi.org/doi:10.1016/j.jhydrol.2005.09.008
  14. Moccia B, Papalexiou SM, Russo F, Napolitano F. Spatial variability of precipitation extremes over Italy using a fine-resolution gridded product. Journal of Hydrology: Regional Studies. 2021;37:100906. Available from: https://doi.org/10.1016/j.ejrh.2021.100906
  15. Bhatla R, Verma S, Ghosh S, Mall RK. Performance of regional climate model in simulating Indian summer monsoon over Indian homogeneous region. Theoretical and Applied Climatology. 2020;139(3-4):1121–1135. Available from: https://doi.org/10.1007/s00704-019-03045-x
  16. Adeyeri OE, Laux P, Lawin AE, Arnault J. Assessing the impact of human activities and rainfall variability on the river discharge of Komadugu-Yobe Basin, Lake Chad Area. Environmental Earth Sciences. 2020;79(6):1–12. Available from: https://doi.org/10.1007/s12665-020-8875-y
  17. Zhang F, Shi X, Zeng C, Wang L, Xiao X, Wang G, et al. Recent stepwise sediment flux increase with climate change in the Tuotuo River in the central Tibetan Plateau. Science Bulletin. 2020;65(5):410–418. Available from: https://doi.org/10.1016/j.scib.2019.12.017
  18. Sebastian A, Gori A, Blessing RB, Wiel KVD, Bass B. Disentangling the impacts of human and environmental change on catchment response during Hurricane Harvey. Environmental Research Letters. 2019;14(12):124023. Available from: https://doi.org/10.1088/1748-9326/ab5234


© 2022 Veerabhadrannavar & Venkatesh. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.