• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 29, Pages: 1458-1465

Original Article

Assessment of Impacts of Climate Change on Varied River-Flow Regimes of Peninsular India

Received Date:17 April 2022, Accepted Date:13 June 2022, Published Date:01 August 2022

Abstract

Objectives: Precipitation is a major component of the hydrological cycle. Precipitation varies in intensity throughout time and space. The discharge at the outlet of the catchment is directly proportional to the precipitation received in the catchment. The current research looks at the precipitation as well as discharge patterns in the Sagar and Kokkarne catchments in the Western Ghats of Karnataka, India. Methods: In the present research, the soil water assessment tool (SWAT) has been applied to monitor and quantify the streamflow of the Sagar and Kokkarne catchments. Precipitation and discharge analysis for the period of 2021-2050 for both of the catchments is carried out. The seasonal and yearly discharge patterns of the catchments were studied using the Coordinated Regional Downscaling Experiment-South Asia data for the RCP 4.5 scenario for the period 2021-2050. Findings: During the Southwest monsoon and Northeast Monsoon, about 81.44 % and 14.22 % of the precipitation in Sagar catchment and about 87.34 % and 6.93 % of the precipitation in Kokkarne catchment were obtained respectively. The contribution of the Southwest Monsoon in both the catchment is greatest, followed by the Northeast monsoon. During the period 2021-2050, less than 80 % probability of discharge is expected for 23 years and more than 20 % probability of discharge is expected for 4 years. The maximum discharge expected in Sagar and Kokkarne catchments are 16.96 m3/sec and 213.87 m3/sec respectively. Novelty: The patterns of the precipitation and discharge of two different catchments on each side of the Western Ghats of Karnataka are compared in the current study to understand the impact of climate change on catchment hydrology in these regions.

References

  1. Shukla R, Agarwal A, Sachdeva K, Kurths J, Joshi PK. Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas. Climatic Change. 2019;152(1):103–119. Available from: https://doi.org/10.1007/s10584-018-2314-z
  2. Dai A, Rasmussen RM, Liu C, Ikeda K, Prein AF. A new mechanism for warm-season precipitation response to global warming based on convection-permitting simulations. Climate Dynamics. 2020;55(1-2):343–368. Available from: https://doi.org/10.1007/s00382-017-3787-6
  3. Bisht IS, Rana JC, Ahlawat SP. The Future of Smallholder Farming in India: Some Sustainability Considerations. Sustainability. 2020;12(9):3751. Available from: https://doi.org/10.3390/su12093751
  4. Kour VP, Arora S. Recent Developments of the Internet of Things in Agriculture: A Survey. IEEE Access. 2020;8:129924–129957. Available from: https://doi.org/10.1109/ACCESS.2020.3009298
  5. Maharana P, Agnihotri R, Dimri AP. Changing Indian monsoon rainfall patterns under the recent warming period 2001–2018. Climate Dynamics. 2021;57(9-10):2581–2593. Available from: https://doi.org/10.1007/s00382-021-05823-8
  6. Amarasinghe U, Amarnath G, Alahacoon N, Ghosh S. How Do Floods and Drought Impact Economic Growth and Human Development at the Sub-National Level in India? Climate. 2020;8(11):123. Available from: https://doi.org/10.3390/cli8110123
  7. Kuntiyawichai K, Sri-Amporn W, Wongsasri S, Chindaprasirt P. Anticipating of Potential Climate and Land Use Change Impacts on Floods: A Case Study of the Lower Nam Phong River Basin. Water. 2020;12(4):1158. Available from: https://doi.org/10.3390/w12041158
  8. Dhaubanjar S, Pandey VP, Bharati L. Climate futures for Western Nepal based on regional climate models in the CORDEX‐SA. International Journal of Climatology. 2020;40(4):2201–2225. Available from: https://doi.org/10.1002/joc.6327
  9. Oo HT, Zin WW, Kyi CCT. Analysis of Streamflow Response to Changing Climate Conditions Using SWAT Model. Civil Engineering Journal. 2020;6(2):194–209. Available from: https://doi.org/10.28991/cej-2020-03091464
  10. Sinha RK, Eldho TI, Subimal G. Assessing the impacts of land use/land cover and climate change on surface runoff of a humid tropical river basin in Western Ghats, India. International Journal of River Basin Management. 2020;p. 1–12. Available from: https://doi.org/10.1080/15715124.2020.1809434
  11. Marahatta S, Aryal D, Devkota LP, Bhattarai U, Shrestha D. Application of SWAT in Hydrological Simulation of Complex Mountainous River Basin (Part II: Climate Change Impact Assessment) Water. 2021;13(11):1548. Available from: https://doi.org/10.3390/w13111548
  12. Mandal U, Sena DR, Dhar A, Panda SN, Adhikary PP, Mishra PK. Assessment of climate change and its impact on hydrological regimes and biomass yield of a tropical river basin. Ecological Indicators. 2021;126:107646. Available from: https://doi.org/10.1016/j.ecolind.2021.107646
  13. Padhiary J, Patra KC, Dash SS, Kumar AU. Climate change impact assessment on hydrological fluxes based on ensemble GCM outputs: a case study in eastern Indian River Basin. Journal of Water and Climate Change. 2020;11(4):1676–1694. Available from: https://doi.org/10.2166/wcc.2019.080
  14. Griensven AV, Meixner T, Grunwald S, Bishop T, Diluzio M, Srinivasan R. A global sensitivity analysis tool for the parameters of multi-variable catchment models. Journal of Hydrology. 2006;324(1-4):10–23. Available from: https://doi.org/10.1016/j.jhydrol.2005.09.008
  15. Busico G, Colombani N, Fronzi D, Pellegrini M, Tazioli A, Mastrocicco M. Evaluating SWAT model performance, considering different soils data input, to quantify actual and future runoff susceptibility in a highly urbanized basin. Journal of Environmental Management. 2020;266:110625. Available from: https://doi.org/10.1016/j.jenvman.2020.110625
  16. Saikranthi K, Radhakrishna B, Thota NR, Satheesh SK. Differences in the association of sea surface temperature—precipitating systems over the Bay of Bengal and the Arabian Sea during southwest monsoon season. International Journal of Climatology. 2019;39(11):4305–4312. Available from: https://doi.org/10.1002/joc.6074
  17. Jain S, Salunke P, Mishra SK, Sahany S. Performance of CMIP5 models in the simulation of Indian summer monsoon. Theoretical and Applied Climatology. 2019;137(1-2):1429–1447. Available from: https://doi.org/10.1007/s00704-018-2674-3
  18. Saini A, Sahu N, Kumar P, Nayak S, Duan W, Avtar R, et al. Advanced Rainfall Trend Analysis of 117 Years over West Coast Plain and Hill Agro-Climatic Region of India. Atmosphere. 2020;11(11):1225. Available from: https://doi.org/10.3390/atmos11111225
  19. Fraga I, Cea L, Puertas J. Effect of rainfall uncertainty on the performance of physically based rainfall-runoff models. Hydrological Processes. 2019;33(1):160–173. Available from: https://doi.org/10.1002/hyp.13319
  20. Williams MR, King KW. Changing rainfall patterns over the Western Lake Erie Basin. Effects on tributary discharge and phosphorus load. 1975;56. Available from: https://doi.org/10.1029/2019WR025985
  21. Sebastian A, Gori A, Blessing RB, Wiel KVD, Bass B. Disentangling the impacts of human and environmental change on catchment response during Hurricane Harvey. Environmental Research Letters. 2019;14(12):124023. Available from: https://doi.org/10.1088/1748-9326/ab5234
  22. Mishra V, Thirumalai K, Singh D, Aadhar S. Future exacerbation of hot and dry summer monsoon extremes in India. Npj Climate and Atmospheric Science. 2020;3:1–9. Available from: https://doi.org/10.1038/s41612-020-0113-5
  23. Bhatla R, Varma P, Verma S, Ghosh S. El Nino/La Nina impact on crop production over different agro-climatic zones of Indo-Gangetic Plain of India. Theoretical and Applied Climatology. 2020;142(1-2):151–163. Available from: https://doi.org/10.1007/s00704-020-03284-3
  24. Pradhan A, Chandrakar T, Nag S, Dixit A, Mukherjee S. Crop planning based on rainfall variability for Bastar region of Chhattisgarh, India. . Journal of Agrometeorology. 2020;22(4):509–517. Available from: https://doi.org/10.54386/jam.v22i4.477
  25. Pattanayak S, Rath BS, Pasupalak S, Mohapatra AKB, Baliarsingh A, Nanda A, et al. Characterisation of rice fallow period for increasing cropping intensity in Khordha district of Odisha. Journal of Agrometeorology. 2019;21(3):344–351. Available from: https://doi.org/10.54386/jam.v21i3.258

Copyright

© 2022 Veerabhadrannavar & Venkatesh.  This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.