• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 39, Pages: 4109-4115

Original Article

Some special structures of S*and A* semirings

Received Date:19 September 2020, Accepted Date:18 October 2020, Published Date:07 November 2020


Objectives: The main objective of this research article is to study the semiring structures, we have majorly focused on the constrains under which the structures of S*and A* semirings are additively and/or multiplicatively idempotent. We have also concentrated on the study of structures of totally ordered S* and A* semirings. Methods: We have imposed singularity, cancellation property, Integral Multiple Property (IMP) and some other constrains on both semirings. Findings: when we imposed totally ordered condition on these two semirings we observed that the additive structure takes place as a maximum addition. Applications: The proposed idempotents have wide applications to computer science, dynamical and logical systems, cryptography, graph theory and artificial intelligence.

Keywords: Almost idempotent; idempotent; integral multiple property; multiplicatively subidempotent; periodic; rectangular band; singular semigroup; zeroid


  1. Amala M, Sulochana N, Vasanthi T. Structure of Multiplicatively Sub idempotent Semirings”. International Refereed Journal of Engineering and Science (IRJES). 2016;5(8):2319–1821. Available from: http://www.irjes.com/Papers/vol5-issue8/E582932.pdf
  2. Amala M, Vasanthi T. Idempotent Property of Semirings. International Journal of Pure Algebra. 2015;5(9):156–159. Available from: a.http://www.rjpa.info/index.php/rjpa/article/view/392
  3. Durcheva M. A Note on Idempotent Semirings. AIP Conference Proceedings. 2016;1789. Available from: https://doi.org/10.1063/1.4968498
  4. Shao Y, Ren M. On the varieties generated by ai-semirings of order two. Semigroup Forum. 2015;91(1):171–184. Available from: https://dx.doi.org/10.1007/s00233-014-9667-z
  5. Guo YQ, Shum KP, Sen MK. The Semigroup Structure of Left Clifford Semirings. Acta Mathematica Sinica, English Series. 2003;19:783–792. Available from: https://dx.doi.org/10.1007/s10114-002-0239-x
  6. Wang Z, Zhou Y, Guo Y. A Note on Band Semirings. Semigroup Forum. 2005;71(3):439–442. Available from: https://dx.doi.org/10.1007/s00233-005-0541-x
  7. Satyanarayana M. On the additive semigroup structure of semirings. Semigroup Forum. 1981;23(1):7–14. Available from: https://dx.doi.org/10.1007/bf02676630
  8. Satyanarayana M. On the additive semigroup of ordered semirings. Semigroup Forum. 1985;31:193–199. Available from: https://dx.doi.org/10.1007/bf02572648
  9. Sulochana N, Vasanthi T. Properties of Completely Regular Semirings. Southeast Asian Bulletin of Mathematics. 2016;40:923–930. Available from: http://www.seams-bull-math.ynu.edu.cn
  10. Rajeswari G. Some Properties of Square Absorption Semirings. International Journal of Research in Advent Technology. 2020;15(8):973–8975. Available from: https://dx.doi.org/10.26782/jmcms.2020.08.00059
  11. GR, TV. Classes of Inverse Semirings and its Ordering. International Journal of Research in Advent Technology. 2019;7(2):279–283. Available from: https://dx.doi.org/10.32622/ijrat.72201976


© 2020 Rajeswari et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).


Subscribe now for latest articles and news.