• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 43, Pages: 3237-3245

Original Article

Changes in Some Carbon and Nitrogen Metabolism Enzymes in Field-Grown Wheat

Received Date:18 July 2021, Accepted Date:02 December 2021, Published Date:21 December 2021


Objective: The activities of alanine and aspartate aminotransferases, NADmalate dehydrogenase in the ontogenesis have been determined in leaves of durum wheat genotypes (Barakatli 95, Garagylchyg 2) with contrasting drought tolerance, cultivated under natural soil drought conditions. Methods/ analysis: Enzymatic activities of aspartate and alanine transferases, NADmalate dehydrogenase were determined spectrophotometrically (Ultrospec 3300 pro, Amersham, USA). Measurements were taken at 340 nm for 1 min and the obtained results were expressed as mmol mg-1*protein min-1. The unequal variance two-tailed Student’s t-test was applied for the analysis of the significance of differences between plants cultivated under irrigated and natural drought conditions. P 0.05 was considered statistically significant. We used three samples for each treatment and performed the analysis twice. Findings : In flag leaves of the drought-tolerant Barakatli 95 genotype, the alanine aminotransferase activity increased ~2.7 and ~2.2 fold compared to the drought-sensitive Garagylchyg 2 genotype, under irrigated and natural drought conditions. According to the results, catabolism of amino acids is faster in the drought-sensitive Garagylchyg 2 genotype compared to the droughttolerant Barakatli 95 genotype under stress. Although the activity of all three enzymes studied varies in parallel in the ontogenesis of flag leaves, it is mostly dependent on leaf water content during the day. Novelty/improvement: The obtained data suggest that high enzyme activities in the Barakati 95 genotype play a role in achieving drought tolerance.

Keywords: Wheat; flag leaf; natural drought conditions; aspartate aminotransferase; alanine aminotransferase; daytime


  1. Baslam M, Mitsui T, Sueyoshi K, Ohyama T. Recent Advances in Carbon and Nitrogen Metabolism in C3 Plants. International Journal of Molecular Sciences. 2020;22(1):318. Available from: https://dx.doi.org/10.3390/ijms22010318
  2. Dahal K, Wang J, Martyn GD, Rahimy F, Vanlerberghe GC. Mitochondrial Alternative Oxidase Maintains Respiration and Preserves Photosynthetic Capacity during Moderate Drought in Nicotiana tabacum. Plant Physiology. 2014;166(3):1560–1574. Available from: https://dx.doi.org/10.1104/pp.114.247866
  3. Ali R, Ali R, Saher MS, Xiling Z, Xuekun Z, Yan L. Xu Jinsong Impact of Climate Change on Crops Adaptation and Strategies to Tackle Its Outcome: A Review. Plants (Basel). 2019;8(2):34. doi: doi: 10.3390/plants8020034
  4. Batista‐Silva W, Heinemann B, Rugen N, Nunes‐Nesi A, Araújo WL, Braun H, et al. The role of amino acid metabolism during abiotic stress release. Plant, Cell & Environment. 2019;42(5):1630–1644. Available from: https://dx.doi.org/10.1111/pce.13518
  5. Hildebrandt T, Nunes Nesi A, Araújo W, Braun HP. Amino Acid Catabolism in Plants. Molecular Plant. 2015;8(11):1563–1579. Available from: https://dx.doi.org/10.1016/j.molp.2015.09.005
  6. Liszka A, Schimpf R, Zaruma KIC, Buhr A, Seidel T, Walter S, et al. Three cytosolic NAD-malate dehydrogenase isoforms of Arabidopsis thaliana: on the crossroad between energy fluxes and redox signaling. Biochemical Journal. 2020;477(19):3673–3693. Available from: https://dx.doi.org/10.1042/bcj20200240
  7. Marcio R, Francesco L, Wagner LA, Adriano NN, Ladaslav S, FernieAlisdair, et al. Fernie Alisdair, and van Dongen Joost Glycolysis and the Tricarboxylic Acid Cycle Are Linked by Alanine Aminotransferase during Hypoxia Induced by Waterlogging of Lotus japonicas. Plant Physiology. 2010;152(3):1501–1513. Available from: https://doi.org/10.1104/pp.109.150045
  8. Gaufichon L, Rothstein SJ, Suzuki A. Asparagine Metabolic Pathways in Arabidopsis. Plant and Cell Physiology. 2016;57(4):675–689. Available from: https://dx.doi.org/10.1093/pcp/pcv184
  9. Guo R, Shi L, Ding X, Hu Y, Tian S, Yan D, et al. Effects of Saline and Alkaline Stress on Germination, Seedling Growth, and Ion Balance in Wheat. Agronomy Journal. 2010;102(4):1252–1260. Available from: https://dx.doi.org/10.2134/agronj2010.0022
  10. Schertl P, Braun HP. Respiratory electron transfer pathways in plant mitochondria. Frontiers in Plant Science. 2014;5:163. Available from: https://dx.doi.org/10.3389/fpls.2014.00163
  11. Galili G, Avin-Wittenberg T, Angelovici R, Fernie AR. The role of photosynthesis and amino acid metabolism in the energy status during seed development. Frontiers in Plant Science. 2014;5:447. Available from: https://dx.doi.org/10.3389/fpls.2014.00447
  12. Tambussi EA, Nogués S, Araus JL. Ear of durum wheat under water stress: water relations and photosynthetic metabolism. Planta. 2005;221(3):446–458. Available from: https://dx.doi.org/10.1007/s00425-004-1455-7
  13. Rekowski A, Langenkämper G, Dier M, Wimmer MA, Scherf KA, Zörb C. Determination of soluble wheat protein fractions using the Bradford assay. Cereal Chemistry. 2021;98(5):1059–1065. Available from: https://dx.doi.org/10.1002/cche.10447
  14. Monné M, Miniero DV, Bisaccia F, Fiermonte G. The mitochondrial oxoglutarate carrier: from identification to mechanism. Journal of Bioenergetics and Biomembranes. 2013;45(1-2):1–13. Available from: https://dx.doi.org/10.1007/s10863-012-9475-7
  15. Miyashita Y, Dolferus R, Ismond KP, Good AG. Alanine aminotransferase catalyses the breakdown of alanine after hypoxia in Arabidopsis thaliana. The Plant Journal. 2007;49(6):1108–1121. Available from: https://dx.doi.org/10.1111/j.1365-313x.2006.03023.x
  16. Xu Z, Ma J, Qu C, Hu Y, Hao B, Sun Y, et al. Identification and expression analyses of the alanine aminotransferase (AlaAT) gene family in poplar seedlings. Scientific Reports. 2017;7(1):45933. Available from: https://dx.doi.org/10.1038/srep45933
  17. Yongqiang C, Zhiyuan F, Hui Z, Runmiao T, Huili Y, Canran S, et al. Tang Jihua Cytosolic malate dehydrogenase 4 modulates cellular energetics and storage reserve accumulation in maize endosperm. Plant Biotechnology Journal. 2020;18(12). Available from: https://doi.org/10.1111/pbi.13416
  18. Selinski J, Scheibe R. Malate valves: old shuttles with new perspectives. Plant Biology. 2019;21(S1):21–30. Available from: https://dx.doi.org/10.1111/plb.12869
  19. Omini J, Wojciechowska I, Skirycz A, Moriyama H, Obata T. Association of the malate dehydrogenase-citrate synthase metabolon is modulated by intermediates of the Krebs tricarboxylic acid cycle. Scientific Reports. 2021;11(1):18770. Available from: https://dx.doi.org/10.1038/s41598-021-98314-z
  20. Abir I, George R, Gupta K, Kapuganti J. Plant mitochondria: source and target for nitric oxide. Mitochondrion. 2014;19:329–333. doi: 10.1016/j.mito.2014.02.003
  21. Tomaz T, Bagard M, Pracharoenwattana I, Lindén P, Lee CP, Carroll AJ, et al. Mitochondrial Malate Dehydrogenase Lowers Leaf Respiration and Alters Photorespiration and Plant Growth in Arabidopsis. Plant Physiology. 2010;154(3):1143–1157. doi: 10.1104/pp.110.161612
  22. Häusler RE, Ludewig F, Krueger S. Amino acids – A life between metabolism and signaling. Plant Science. 2014;229:225–237. doi: 10.1016/j.plantsci.2014.09.011


© 2021 Gurbanova et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.