• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 1, Pages: 56-65

Original Article

Classification of Long-Bone Fractures Using Modified Faster RCNN for X-Ray Images

Received Date:17 August 2022, Accepted Date:27 November 2022, Published Date:06 January 2023


Objectives: Methods in machine learning have been shown to be an essential tool for the diagnosis and treatment of disease. The scientists are constantly looking for new technology that might improve current clinical practise. One of the most well-liked study fields continues to be computerized bone fracture identification and categorization. Furthermore, identifying cracks and determining where they occur have been challenges for historically developed approaches for the long bone fracture method. Methods: We propose a new approach for automatic fracture detection in X-Ray images. This approach is built on top of two-stage fracture detection deep learning algorithm called Faster R-CNN with a major modification of using rotated bounding box. The described procedure is divided into four main steps: X-ray images are used to: I identify the bone contour; (ii) identify fracture-points or fractures; (iii) find a similar set of shapes that are compatible with the identification of cracks; and (iv) classify and thoroughly evaluate the fracture-type using bounding box. Finding: The resolution process uses the stretched numerical conventional line techniques (RDS), arcs, discrete curvature, and shape directory, among other mathematical characteristics of digital curves. We assessed the suggested model’s performance in terms of classification and detection. We divide x-ray pictures of bone fractures into 2 groups, fracture and non-fracture, and we also use a rectangular box to identify the location of fractures. Besides, an additional benefit of rotated bounding box is that it can provide relative information on the orientation and length of fracture without the further segmentation and measurement step. Novelty: This study develops a new approach to automatically and accurately detect fractures in X-Ray images. The proposed approach is developed on the basis of Faster R-CNN algorithm with a major modification for the task of rotated bounding box prediction.

Keywords: Long bone; X-Ray images; Classification; Detection; Faster RCNN; Fracture; Non-Fracture; Types


  1. Amodeo M, Abbate V, Arpaia P, Cuocolo R, Orabona GD, Murero M, et al. Transfer Learning for an Automated Detection System of Fractures in Patients with Maxillofacial Trauma. Applied Sciences. 2021;11(14):6293. Available from: https://www.mdpi.com/1180840
  2. Bengio Y, Lecun Y, Hinton G. Deep learning for AI. Communications of the ACM. 2021;64(7):58–65. Available from: https://doi.org/10.1145/3448250
  3. Yadav DP, Rathor S. Bone Fracture Detection and Classification using Deep Learning Approach. 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC). 2020;p. 282–285. Available from: https://doi.org/10.1109/PARC49193.2020.236611
  4. Hardalaç F, Uysal F, Peker O, Çiçeklidağ M, Tolunay T, Tokgöz N, et al. Fracture Detection in Wrist X-ray Images Using Deep Learning-Based Object Detection Models. Sensors. 2022;22(3):1285. Available from: https://doi.org/10.3390/s22031285
  5. Lapeña JF, David JN, Pauig ANA, Maglaya JG, Donato EM, Roasa F, et al. Management of Isolated Mandibular Body Fractures in Adults. Philippine Journal of Otolaryngology Head and Neck Surgery. 2021;p. 1–43. Available from: https://doi.org/10.32412/pjohns.vi.1857
  6. Tanzi L, Vezzetti E, Moreno R, Moos S. X-Ray Bone Fracture Classification Using Deep Learning: A Baseline for Designing a Reliable Approach. Applied Sciences. 2020;10(4):1507. Available from: https://doi.org/10.3390/app10041507
  7. Yadav DP, Rathor S. Bone Fracture Detection and Classification using Deep Learning Approach. 2020 International Conference on Power Electronics & IoT Applications in Renewable Energy and its Control (PARC). 2020;p. 282–285. Available from: https://doi.org/10.1109/PARC49193.2020.236611
  8. Alzaid A, Wignall A, Dogramadzi S, Pandit H, Xie SQ. Automatic detection and classification of peri-prosthetic femur fracture. International Journal of Computer Assisted Radiology and Surgery. 2022;17(4):649–660. Available from: https://doi.org/10.1007/s11548-021-02552-5
  9. El-Saadawy H, Tantawi M, Shedeed H, Tolba M. Bone X-Rays Classification and Abnormality Detection using Xception Network. International Journal of Intelligent Computing and Information Sciences. 2021;21(2):82–95. Available from: https://dx.doi.org/10.21608/ijicis.2021.79392.1101
  10. Yadav DP, Sharma A, Athithan S, Bhola A, Sharma B, Dhaou IB. Hybrid SFNet Model for Bone Fracture Detection and Classification Using ML/DL. Sensors. 2022;22(15):5823. Available from: https://doi.org/10.3390/s22155823
  11. Tanzi L, Vezzetti E, Moreno R, Aprato A, Audisio A, Massè A. Hierarchical fracture classification of proximal femur X-Ray images using a multistage Deep Learning approach. European Journal of Radiology. 2020;133:109373. Available from: https://doi.org/10.1016/j.ejrad.2020.109373
  12. Kandel I, Castelli M, Popovič A. Musculoskeletal Images Classification for Detection of Fractures Using Transfer Learning. Journal of Imaging. 2020;6(11):127. Available from: https://www.mdpi.com/2313-433X/6/11/127/pdf
  13. Oyeranmi A, Ronke B, Mohammed R, Edwin A. Detection of Fracture Bones in X-ray Images Categorization. British Journal of Mathematics & Computer Science. 2020. Available from: https://doi.org/10.9734/JAMCS/2020/v35i430265
  14. Lee C, Jang J, Lee S, Kim YS, Jo HJ, Kim YS. Classification of femur fracture in pelvic X-ray images using meta-learned deep neural network. Scientific Reports. 2020;10(1):1–12. Available from: https://www.nature.com/articles/s41598-020-70660-4.pdf
  15. Uysal F, Hardalaç F, Peker O, Tolunay T, Tokgöz N. Classification of shoulder X-ray images with deep learning ensemble models. Applied Sciences. 2021;11(6):2723. Available from: https://doi.org/10.48550/arXiv.2102.00515


© 2023 Vironicka & Sathiaseelan. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.