• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 9, Pages: 780-786

Original Article

Comparative Receptor Models Using Principal Component Analysis/Absolute Principal Component Scores and Positive Matrix Factorization to Assess Source Apportionment of PM2.5-10 and PM2.5 in Urban Cities

Received Date:22 November 2023, Accepted Date:26 January 2024, Published Date:20 February 2024


b Source apportionment of PM2.5-10 and PM2.5 was conducted using two receptor models: the principal component analysis/absolute principal component scores (PCA/APCS) and the positive matrix factorization (PMF). Methods: The PCA/APCS model resolved four sources, namely, mineral dust, sea salt/secondary sulfur, a mixed source, and traffic and industry emissions. PMF model also resolved four sources of the same origin based on the proportion of each component from the analysis. All models identified the main sources that contribute to PM2.5-10 and PM2.5 emissions and reconfirmed that the potential sources were the dominants in particulate matter in the Capital city. Findings: The first four extracted component accounted for nearly 88.3% of the variability of the data set. The running matrix elements used for data processing within collected air particulate matter was BC, Na, Al, Si, P, S, Cl, K, Ca, Ti, V, Cr, Mn, Fe, Ni, Cu, Zn, Br, Rb, Sr, Ba, and Pb. This discrimination of the area of Dakar cites according to the PCA/APCS results confirms the impact that the major activities have on the environment in the most appropriate way, and it verifies the results of previous studies about the influence of Industry emissions, mineral dust, traffic emissions and sea salt/secondary sulfur on the surrounding urban areas. Novelty: Continued collection of speciation data at the urban areas will enhance the understanding of local versus regional source contributions for air quality index in sub-Sahara region.

Keywords: Aerosol, Particulate Matter, Source apportionment, receptor Modelling, XRF, heavy metals


  1. Dockery DW, Pope CA, Xu X, Spengler JD, Ware JH, Fay ME, et al. An Association between Air Pollution and Mortality in Six U.S. Cities. New England Journal of Medicine. 1993;329(24):1753–1759. Available from: https://doi.org/10.1056/NEJM199312093292401
  2. Guaita R, Pichiule M, Maté T, Linares C, Díaz J. Short-term impact of particulate matter (PM2.5) on respiratory mortality in Madrid. International Journal of Environmental Health Research. 2011;21(4):260–274. Available from: https://doi.org/10.1080/09603123.2010.544033
  3. Halonen JI, Lanki T, Yli-Tuomi T, Tiittanen P, Kulmala M, Pekkanen J. Particulate Air Pollution and Acute Cardiorespiratory Hospital Admissions and Mortality Among the Elderly. Epidemiology. 2009;20(1):143–153. Available from: https://journals.lww.com/epidem/fulltext/2009/01000/particulate_air_pollution_and_acute.23.aspx
  4. Perez L, Tobías A, Querol X, Pey J, Alastuey A, Díaz J, et al. Saharan dust, particulate matter and cause-specific mortality: A case–crossover study in Barcelona (Spain) Environment International. 2012;48:150–155. Available from: https://doi.org/10.1016/j.envint.2012.07.001
  5. Samoli E, Peng R, Ramsay T, Pipikou M, Touloumi G, Dominici F, et al. Acute Effects of Ambient Particulate Matter on Mortality in Europe and North America: Results from the APHENA Study. Environmental Health Perspectives. 2008;116(11):1480–1486. Available from: https://doi.org/10.1289/ehp.11345
  6. Celis JE, Morales JR, Zaror CA, Inzunza JC. A study of the particulate matter PM10 composition in the atmosphere of Chillán, Chile. Chemosphere. 2004;54(4):541–550. Available from: https://doi.org/10.1016/S0045-6535(03)00711-2
  7. Hong YM, Lee BK, Park KJ, Kang MHH, Jung YRR, Lee DS, et al. Atmospheric nitrogen and sulfur containing compounds for three sites of South Korea. Atmospheric Environment. 2002;36(21):3485–3494. Available from: https://doi.org/10.1016/S1352-2310(02)00289-3
  8. Rajkumar WS, Chang AS. Suspended particulate matter concentrations along the East–West Corridor, Trinidad, West Indies. Atmospheric Environment. 2000;34(8):1181–1187. Available from: https://doi.org/10.1016/S1352-2310(99)00381-7
  9. Pope CA, Dockery DW. Health Effects of Fine Particulate Air Pollution: Lines that Connect. Journal of the Air & Waste Management Association. 2006;56(6):709–742. Available from: https://doi.org/10.1080/10473289.2006.10464485
  10. Mauderly JL, Chow JC. Health Effects of Organic Aerosols. Inhalation Toxicology. 2008;20(3):257–288. Available from: https://doi.org/10.1080/08958370701866008
  11. Russell AG, Brunekreef B. A Focus on Particulate Matter and Health. Environmental Science & Technology. 2009;43(13):4620–4625. Available from: https://doi.org/10.1021/es9005459
  12. Tie X, Wu D, Brasseur G. Lung cancer mortality and exposure to atmospheric aerosol particles in Guangzhou, China. Atmospheric Environment. 2009;43(14):2375–2377. Available from: https://doi.org/10.1016/j.atmosenv.2009.01.036
  13. Yan B, Zheng M, Hu Y, Ding X, Sullivan AP, Weber RJ, et al. Roadside, Urban, and Rural Comparison of Primary and Secondary Organic Molecular Markers in Ambient PM<sub>2.5</sub>. Environmental Science & Technology. 2009;43(12):4287–4293. Available from: https://doi.org/10.1021/es900316g
  14. Habre R, Coull B, Koutrakis P. Impact of source collinearity in simulated PM2.5 data on the PMF receptor model solution. Atmospheric Environment. 2011;45(38):6938–6946. Available from: https://doi.org/10.1016/j.atmosenv.2011.09.034
  15. Vernile P, Tutino M, Bari G, Amodio M, Spagnuolo M, Gennaro GD, et al. Particulate Matter Toxicity Evaluation Using Bioindicators and Comet Assay. Aerosol and Air Quality Research. 2013;13(1):172–178. Available from: https://doi.org/10.4209/aaqr.2012.07.0173
  16. Miller SL, Anderson MJ, Daly EP, Milford JB. Source apportionment of exposures to volatile organic compounds. I. Evaluation of receptor models using simulated exposure data. Atmospheric Environment. 2002;36(22): 3629–3641. Available from: https://doi.org/10.1016/S1352-2310(02)00279-0
  17. Song Y, YZ, Xie S, Zeng L, MZ, Salmon LG, et al. Source apportionment of PM2.5 in Beijing by positive matrix factorization. Atmospheric Environment. 2006;40(8):1526– 1537. Available from: https://doi.org/10.1016/j.atmosenv.2005.10.039
  18. Zheng M, Salmon LG, Schauer JJ, Zeng L, Kiang CS, Zhang Y, et al. Seasonal trends in PM2.5 source contributions in Beijing, China. Atmospheric Environment. 2005;39(22):3967–3976. Available from: https://doi.org/10.1016/j.atmosenv.2005.03.036
  19. Chen R, Teng Y, Chen H, Hu B, Yue W. Groundwater pollution and risk assessment based on source apportionment in a typical cold agricultural region in Northeastern China. Science of The Total Environment. 2019;696:133972. Available from: https://doi.org/10.1016/j.scitotenv.2019.133972
  20. Meng L, Zuo R, Wang JSS, Yang J, Teng YGG, Shi RTT, et al. Apportionment and evolution of pollution sources in a typical riverside groundwater resource area using PCA-APCS-MLR model. Journal of Contaminant Hydrology. 2018;218:70–83. Available from: https://doi.org/10.1016/j.jconhyd.2018.10.005
  21. Kebe M, Traore A, Manousakas MI, Vasilatou V, Ndao AS, Wague A, et al. Source Apportionment and Assessment of Air Quality Index of PM2.5–10 and PM2.5 in at Two Different Sites in Urban Background Area in Senegal. Atmosphere. 2021;12(2):1–15. Available from: https://doi.org/10.3390/atmos12020182
  22. Manousakas M, Diapouli E, Papaefthymiou H, Kantarelou V, Zarkadas C, Kalogridis A‐, et al. XRF characterization and source apportionment of PM10 samples collected in a coastal city. X-Ray Spectrometry. 2018;47(3):190–200. Available from: https://doi.org/10.1002/xrs.2817
  23. Polissar AV, Hopke PK, Paatero P, Malm WC, Sisler JF. Atmospheric aerosol over Alaska: 2. Elemental composition and sources. Journal of Geophysical Research: Atmospheres. 1998;103(D15):19045–19057. Available from: https://doi.org/10.1029/98JD01212
  24. Kaiser HF. The varimax criterion for analytic rotation in factor analysis. Psychometrika. 1958;23(3):187–200. Available from: https://doi.org/10.1007/BF02289233
  25. Henry RC, Hidy GM. Multivariate analysis of particulate sulfate and other air quality variables by principal components-Part I. Atmospheric Environment (1967). 1979;13(11):1581–1596. Available from: https://doi.org/10.1016/0004-6981(79)90068-4
  26. Almeida SM, Pio CA, Freitas MC, Reis MA, Trancoso MA. Source apportionment of fine and coarse particulate matter in a sub-urban area at the Western European Coast. Atmospheric Environment. 2005;39(17):3127–3138. Available from: https://doi.org/10.1016/j.atmosenv.2005.01.048
  27. Hopke PK. Workbook on data analysis. Prepared for participants in the UNDP/RCA/IAEA, Subproject on Air Pollution and its Trends. (pp. 1-51) Vienna, Austria. International Atomic Energy Agency. 2000.
  28. Tull CR, Udewigt BA, Lewak D. Spectral Response of Multielement Silicon X-Ray Detectors. IEEE Transactions on Nuclear Science. 1998;45(3):421–427. Available from: https://doi.org/10.1109/23.682420
  29. He F, Espen PV. An integrated system for quantitative EDXRF analysis based on fundamental parameters. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. 1990;299(1-3):580–583. Available from: https://doi.org/10.1016/0168-9002(90)90848-Z
  30. Custo G, Boeykens S, Cicerone D, Vázquez C. Combining XRF analysis and chemometric tools for a preliminary classification of argentine soils. X-Ray Spectrometry. 2002;31(2):132–135. Available from: https://doi.org/10.1002/xrs.555
  31. Manousakas M, Papaefthymiou H, Diapouli E, Migliori A, Karydas AG, Bogdanovic-Radovic I, et al. Assessment of PM2.5 sources and their corresponding level of uncertainty in a coastal urban area using EPA PMF 5.0 enhanced diagnostics. Science of The Total Environment. 2017;574:155–164. Available from: https://doi.org/10.1016/j.scitotenv.2016.09.047
  32. Pateraki ST, Manousakas M, Bairachtari K, Kantarelou V, Eleftheriadis K, Vasilakos CH, et al. The traffic signature on the vertical PM profile: Environmental and health risks within an urban roadside environment. Science of The Total Environment. 2019;646:448–459. Available from: https://doi.org/10.1016/j.scitotenv.2018.07.289
  33. Sternbeck J, Sjödin Å, Andréasson K. Metal emissions from road traffic and the influence of resuspension—results from two tunnel studies. Atmospheric Environment. 2002;36(30):4735–4744. Available from: https://doi.org/10.1016/S1352-2310(02)00561-7


© 2024 Traore et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.