• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 13, Pages: 1450-1457

Original Article

Competitive equilibrium based personal data market model

Received Date:14 April 2020, Accepted Date:23 April 2020, Published Date:25 May 2020


Background/Objectives: In a digital economy, with the increasing commercial value, personal data is viewed as a commodity to be bought and sold. Data owners expect an appropriate compensation for trading off their privacy depending on how they value their privacy. Simultaneously, data consumers want to maximize their utility which is dependent on the value derived from the data. Consequently, a data market model that optimally recompenses data owners and maximizes the profits of data consumers is required. Methods: In this study, a data market model and pricing mechanism based on Fisher market model and competitive equilibrium are presented where the value derived from the data is calculated from information entropy. The proposed data model and the pricing mechanism jointly and simultaneously maximize the profit of data owners and the utility of data buyers. Findings: Experiments are conducted on adult data set to validate the efficacy of the proposed approach. Data owners are classified as risk averse, risk neutral, risk taking and privacy regarders. Subsequently, prices of data samples are adjusted to reach equilibrium as defined by the Fisher market model maximizing simultaneously and jointly the profit of data owners and the utility of data buyers. Applications: The proposed competitive equilibrium based personal data market model can be used to find equilibrium prices and bundles of data samples for each data buyer at these prices maximizing the utility of data buyer subject to his budgetary constraints and data requirements, and data owners' privacy preferences.

Keywords: Personal data; Competitive equilibrium; Fisher market; Information entropy; Data buyers; Data owners; Data market


  1. Ghosh A, Roth A. Selling privacy at auction. Proceedings of the 12th ACM conference on Electronic commerce. 2011;p. 199–208.
  2. Li C, Li DY, Miklau G, Suciu D. A theory of pricing private data. Communications of the ACM. 2017;60(12):79–86. doi: 10.1145/3139457
  3. Riederer C, Erramilli V, Chaintreau A, Krishnamurthy B, Rodriguez P. For sale: your data: by you. Proceedings of the 10th ACM WORKSHOP on Hot Topics in Networks. 2011;p. 1–6.
  4. Bergemann D, Bonatti A, Gan T. 2020. Available from: https://dx.doi.org/10.2139/ssrn.3548336
  5. Nussbaum E, Segal M. 2019. Available from: https://arxiv.org/abs/1905.11694
  6. Bayardo RJ, Agrawal R. Data privacy through optimal k-anonymization. In21st International conference on data engineering (ICDE’05. 2005;p. 217–228.
  7. Nayahi JJV, Kavitha V. Privacy and utility preserving data clustering for data anonymization and distribution on Hadoop. Future Generation Computer Systems. 2017;74:393–408. doi: 10.1016/j.future.2016.10.022
  8. Man N, Li X, Wang K. A Privacy Protection Model Based On K-Anonymity. In2017 International Conference Advanced Engineering and Technology Research. 2017.
  9. Bataineh AS, Mizouni R, Bentahar J, Barachi E, M. Toward monetizing personal data: A two-sided market analysis. Future Generation Computer Systems. 2019. doi: 10.1016/j.future.2019.11.009
  10. Choi JP, Jeon DS, Kim BC. Privacy and personal data collection with information externalities. Journal of Public Economics. 2019;173:113–137. doi: 10.1016/j.jpubeco.2019.02.001
  11. Laudon KC. Markets and privacy. Communications of the ACM. 1996;39(9):92–104. doi: 10.1145/234215.234476
  12. Gkatzelis V, Aperjis C, Huberman BA. Pricing private data. Electronic Markets. 2015;25:109–123. doi: 10.1007/s12525-015-0188-8
  13. Niyato D, Alsheikh MA, Wang P, Kim DI, Han Z. Market model and optimal pricing scheme of big data and Internet of Things (IoT) In2016 IEEE International Conference on Communications (ICC). 2016;p. 1–6.
  14. Yang J, Zhao C, Xing C. Big Data Market Optimization Pricing Model Based on Data Quality. Complexity. 2019;2019:1–10. doi: 10.1155/2019/5964068
  15. Garfinkel R, Gopal RD, Nunez M, Rice DO. Secure electronic markets for private information. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans. 2006;36(3):461–471. doi: 10.1109/tsmca.2006.871794
  16. Nisan N, Roughgarden T, Tardos E, Vazirani VV., eds. Algorithmic Game Theory. Cambridge University Press. 2007.
  17. Maxfield RR. General equilibrium and the theory of directed graphs. Journal of Mathematical Economics. 1997;27(1):23–51. doi: 10.1016/0304-4068(95)00763-6
  18. Arrow KJ, Debreu G. Existence of an Equilibrium for a Competitive Economy. Econometrica. 1954;22(3):265. doi: 10.2307/1907353
  19. Shen Y, Guo B, Shen Y, Duan X, Dong X, Zhang H. A pricing model for big personal data. Tsinghua Science and Technology. 2016;21:482–90. doi: 10.1109/TST.2016.7590317


© 2020 Rekha, Chatrapati.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.