• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 24, Pages: 1768-1776

Original Article

Deep Learning based Artificial Intelligent Systems in Road Traffic Density Estimation and Congestion Classification

Received Date:07 September 2021, Accepted Date:02 June 2023, Published Date:19 June 2023


Objectives: The main objective of this paper is to employ the subset of artificial intelligence, namely, deep learning to estimate road traffic density and thus mitigate the undesirable effects caused by traffic congestion and improve the quality of life of people. Methods: This work presents a method of classification of road traffic conditions based on video surveillance data obtained from CCTV cameras mounted on highways. A simple, basic architecture of deep convolutional neural network (DCNN) based method is introduced that learns traffic density from pre-labeled images in order to estimate the traffic flow density in highways. Findings: The standard publicly available UCSD dataset of real videos is used for experimental verification. The experimental results obtained shows that the proposed model outperformed all the existing conventional methods in the literature by reaching the highest accuracy and classifies the test video in less computational time. Novelty: The proposed methodology employs Matlab deep learning network designer with hyper parameter tuning, cross validation and activation maps to classify the road traffic density into three different states namely light, medium and heavy.

Keywords: Deep Learning; Artificial Intelligent Systems; Density Estimation; Intelligent Transportation Management; Deep CNN


  1. Cucchiara R, Piccardi M, Mello P. Image analysis and rule-based reasoning for a traffic monitoring system. IEEE Transactions on Intelligent Transportation Systems. 2000;1(2):119–130. Available from: https://doi.org/10.1109/6979.880969
  2. Kastrinaki V, Zervakis M, Kalaitzakis K. A survey of video processing techniques for traffic applications. Image and Vision Computing. 2003;21(4):359–381. Available from: https://doi.org/10.1016/S0262-8856(03)00004-0
  3. Vipin JV, Sharma A, Ashlesh, Lakshminarayanan SL. Road traffic congestion in the developing world. Proceedings of the 2nd ACM Symposium on Computing for Development. 2012;11:11. Available from: https://doi.org/10.1145/2160601.2160616
  4. Pongpaibool P, Tangamchit P, Noodwong K. Evaluation of road traffic congestion using fuzzy techniques. TENCON 2007 - 2007 IEEE Region 10 Conference. 2007;p. 1–4. Available from: https://doi.org/10.1109/TENCON.2007.4429119
  5. Uddin MS. Real-time Area Based Traffic Density Estimation by Image Processing for Traffic Signal Control System. Bangladesh Perspective. International Conference on Electrical Engineering and Information Communication Technology (ICEEICT). 2015. Available from: https://doi.org/10.1109/ICEEICT.2015.7307377
  6. Dean, Jeffrey, Corrado, Greg, Monga, Rajat, et al. Large scale distributed deep networks. Advances in Neural Information Processing Systems. 2012;p. 1223–1231. Available from: https://proceedings.neurips.cc/paper/2012/file/6aca97005c68f1206823815f66102863-Paper.pdf
  7. Kurniawan J, Syahra SGS, Dewa CK, Afiahayati. Traffic Congestion Detection: Learning from CCTV Monitoring Images using Convolutional Neural Network. Procedia Computer Science. 2018;144:291–297. Available from: https://doi.org/10.1016/j.procs.2018.10.530
  8. Hinton GE, Osindero S, Teh YW. A Fast Learning Algorithm for Deep Belief Nets. Neural Computation. 2006;18(7):1527–1554. Available from: https://doi.org/10.1162/neco.2006.18.7.1527
  9. Hinton GE, Salakhutdinov RR. Reducing the Dimensionality of Data with Neural Networks. Science. 2006;313(5786):504–507. Available from: https://doi.org/10.1126/science.1127647
  10. Huang W, Song G, Hong H, Xie K. Deep Architecture for Traffic Flow Prediction: Deep Belief Networks With Multitask Learning. IEEE Transactions on Intelligent Transportation Systems. 2014;15(5):2191–2201. Available from: https://doi.org/10.1109/TITS.2014.2311123
  11. Zhang S, Shanghang, Wu G, Guanhang, Costeira J, Joãop, et al. FCN-rLSTM: Deep spatio-temporal neural networks for vehicle counting in city cameras. Proceedings of the IEEE international conference on computer vision. 2017. Available from: https://doi.org/10.1109/iccv.2017.3966
  12. Anderson, Tessa K. Kernel density estimation and K-means clustering to profile road accident hotspots. Accident Analysis & Prevention. 2009;41(3):359–364. Available from: https://doi.org/10.1016/j.aap.2008.12.014
  13. Akhtar M, Moridpour S. A Review of Traffic Congestion Prediction Using Artificial Intelligence. Journal of Advanced Transportation. 2021;2021:1–18. Available from: https://doi.org/10.1155/2021/8878011
  14. Bengio Y. Learning deep architectures for AI. Foundations and Trends in Machine Learning. 2009;2(1):1–127. Available from: https://doi.org/10.1561/2200000006G
  15. Chan AB, Vasconcelos N. Classification and retrieval of traffic video using auto-regressive stochastic processes. IEEE Proceedings. Intelligent Vehicles Symposium, 2005.. 2005;p. 771–776. Available from: https://doi.org/10.1109/IVS.2005.1505198
  16. Harilakshmi VS, Jansi PA, R. Intelligent vehicle counter - a road to sustainable development and pollution prevention (P2) International Conference on Energy Efficient Technologies for Sustainability. 2016;877. Available from: https://doi.org/10.1109/ICEETS.2016.75838711
  17. Talha SUM, Tanzila, Draz H, Umer R, Amjad G, Khan KMU, et al. Intelligent Traffic Signal Automation Based on Computer Vision Techniques Using Deep Learning. IT Professional. 24(1):27–33. Available from: https://doi.org/10.1109/MITP.2021.3121804
  18. Donato D, Impedovo F, Balducci V, Dentamaro G, Pirlo. Vehicular Traffic Congestion Classification by Visual Features and Deep Learning Approaches: A Comparison. Sensors. 2019(23). Available from: https://doi.org/10.3390/s19235213
  19. Luong ATN, Ha T, Xuan. A Novel Approach of Traffic Density Estimation Using CNNs and Computer Vision. European Journal of Electrical Engineering and Computer Science. 2021;p. 80–84. Available from: https://doi.org/10.24018/ejece.2021.5.4.353


© 2023 Harilakshmi & Rani. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.