• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 43, Pages: 3917-3926

Original Article

Design Optimization Using Modified Differential Evolution Algorithm

Received Date:06 June 2023, Accepted Date:09 October 2023, Published Date:17 November 2023


Objectives: The key objective of this article is to suggest a modified differential evolution (MDE) algorithm for design problem optimization particularly reactor network design (RND) problem. Methods: During the few decades differential evolution (DE) algorithm achieved noticeable progress and solved a wide variety of optimization issues. However, the DE suffers from low diversification, poor exploration ability and stagnation. Hence, using concept of the particle swarm optimization mechanism (PSO), suggested MDE employed new mutation operator, to balance exploitation and exploration activities. Also, on the basis of time-varying scheme new mutation operator integrates new control parameter, to avoid stagnation. A group of 6 unconstrained benchmark functions are solved, to investigate the presentation of MDE algorithm. Moreover, its practical superiority is further verified by solving RND problem. Findings: The experiential results show that the suggested MDE performs well in each case of unconstrained benchmark functions with the highest rate of success. Moreover, optimize the RND problem very effectively with the lowest time (2.98s) and fewer number of function evaluations (12729). Furthermore, outcomes suggest that the proposed MDE exhibits a better or at least competitive performance compared to evolutionary algorithms. Novelty: The exploitation and exploration ability of the suggested MDE are balanced efficiently due to use of memory facts (i.e. novel mutation operator) and adapted (i.e. new time-varying) control parameters.

Keywords: Evolutionary algorithms, differential evolution, mutation, control parameter, design optimization


  1. Abualigah L, Elaziz MA, Khasawneh AM, Alshinwan M, Ibrahim RA, Al-Qaness MAA, et al. Meta-heuristic optimization algorithms for solving real-world mechanical engineering design problems: a comprehensive survey, applications, comparative analysis, and results. Neural Computing and Applications. 2022;34(6):4081–4110. Available from: https://doi.org/10.1007/s00521-021-06747-4
  2. Zuo M, Dai G, Peng L, Wang M, Liu Z, Chen C. A case learning-based differential evolution algorithm for global optimization of interplanetary trajectory design. Applied Soft Computing. 2020;94:106451. Available from: https://doi.org/10.1016/j.asoc.2020.106451
  3. Zuo M, Dai G, Peng L, Tang Z, Gong D, Wang Q. A differential evolution algorithm with the guided movement for population and its application to interplanetary transfer trajectory design. Engineering Applications of Artificial Intelligence. 2022;110:104727. Available from: https://doi.org/10.1016/j.engappai.2022.104727
  4. Zuo M, Gong D, Wang Y, Ye X, Zeng B, Meng F. Process Knowledge-guided Autonomous Evolutionary Optimization for Constrained Multiobjective Problems. IEEE Transactions on Evolutionary Computation. 2023;p. 1. Available from: https://ieeexplore.ieee.org/document/10040230
  5. Tian Y, Chen H, Ma H, Zhang X, Tan KC, Jin Y. Integrating Conjugate Gradients Into Evolutionary Algorithms for Large-Scale Continuous Multi-Objective Optimization. IEEE/CAA Journal of Automatica Sinica. 2022;9(10):1801–1817. Available from: https://ieeexplore.ieee.org/document/9889139
  6. Abualigah L, Diabat A, Mirjalili S, Elaziz MA, Gandomi AH. The Arithmetic Optimization Algorithm. Computer Methods in Applied Mechanics and Engineering. 2021;376:1–38. Available from: https://doi.org/10.1016/j.cma.2020.113609
  7. Whitley D. A genetic algorithm tutorial. Statistics and Computing. 1994;4(2):65–85. Available from: https://doi.org/10.1007/BF00175354
  8. Storn R, Price K. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization. 1997;11:341–359. Available from: https://doi.org/10.1023/A:1008202821328
  9. Faramarzi A, Heidarinejad M, Stephens B, Mirjalili S. Equilibrium optimizer: A novel optimization algorithm. Knowledge-Based Systems. 2020;191:105190. Available from: https://doi.org/10.1016/j.knosys.2019.105190
  10. Ahmad MF, Isa NAM, Lim WH, Ang KM. Differential evolution: A recent review based on state-of-the-art works. Alexandria Engineering Journal. 2022;61(5):3831–3872. Available from: https://doi.org/10.1016/j.aej.2021.09.013
  11. Georgioudakis M, Plevris V. A Comparative Study of Differential Evolution Variants in Constrained Structural Optimization. Frontiers in Built Environment. 2020;6:1–14. Available from: https://doi.org/10.3389/fbuil.2020.00102
  12. Stokes Z, Mandal A, Wong WK. Using Differential Evolution to design optimal experiments. Chemometrics and Intelligent Laboratory Systems. 2020;199:103955. Available from: https://doi.org/10.1016/j.chemolab.2020.103955
  13. Zuo M, Dai G, Peng L. A new mutation operator for differential evolution algorithm. Soft Computing. 2021;25(21):13595–13615. Available from: https://doi.org/10.1007/s00500-021-06077-6
  14. Mingcheng Z, Guo C. DE/current-to-better/ 1: A new mutation operator to keep population diversity. Intelligent Systems with Applications. 2022;14:1–22. Available from: https://doi.org/10.1016/j.iswa.2022.200063
  15. Li Y, Wang S, Liu H, Yang B, Yang H, Zeng M, et al. A backtracking differential evolution with multi-mutation strategies autonomy and collaboration. Applied Intelligence. 2022;52(3):3418–3444. Available from: https://doi.org/10.1007/s10489-021-02577-y
  16. Duan M, Yu C, Wang S, Li B. A differential evolution algorithm with a superior-inferior mutation scheme. Soft Computing. 2023;27(23):17657–17686. Available from: https://doi.org/10.1007/s00500-023-09038-3
  17. Zhang Q, Meng Z. Adaptive differential evolution algorithm based on deeply-informed mutation strategy and restart mechanism. Engineering Applications of Artificial Intelligence. 2023;126(Part C):107001. Available from: https://doi.org/10.1016/j.engappai.2023.107001
  18. Deng L, Qin Y, Li C, Zhang L. An adaptive mutation strategy correction framework for differential evolution. Neural Computing and Applications. 2023;35(15):11161–11182. Available from: https://doi.org/10.1007/s00521-023-08291-9
  19. Parouha RP, Verma P. State-of-the-Art Reviews of Meta-Heuristic Algorithms with Their Novel Proposal for Unconstrained Optimization and Applications. Archives of Computational Methods in Engineering. 2021;28(5):4049–4115. Available from: https://doi.org/10.1007/s11831-021-09532-7
  20. Wolpert DH, Macready WG. No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation. 1997;1(1):67–82. Available from: https://ieeexplore.ieee.org/document/585893
  21. Das S, Abraham A, Chakraborty UK, Konar A. Differential Evolution Using a Neighborhood-Based Mutation Operator. IEEE Transactions on Evolutionary Computation. 2009;13(3):526–553. Available from: https://ieeexplore.ieee.org/document/5089881
  22. Cheshmehgaz HR, Desa MI, Wibowo A. Effective local evolutionary searches distributed on an island model solving bi-objective optimization problems. Applied Intelligence. 2013;38:331–356. Available from: https://doi.org/10.1007/s10489-012-0375-7
  23. Han MFF, Liao SHH, Chang JYY, Lin CTT. Dynamic group-based differential evolution using a self-adaptive strategy for global optimization problems. Applied Intelligence. 2013;39(1):41–56. Available from: https://doi.org/10.1007/s10489-012-0393-5
  24. Derrac J, García S, Molina D, Herrera F. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation. 2011;1(1):3–18. Available from: https://doi.org/10.1016/j.swevo.2011.02.002
  25. Ryoo HS, Sahinidis NV. Global optimization of nonconvex NLPs and MINLPs with applications in process design. Computers & Chemical Engineering. 1995;19(5):551–566. Available from: https://doi.org/10.1016/0098-1354(94)00097-2


© 2023 Tiwari et al.  This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.