• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 48, Pages: 3494-3508

Systematic Review

Dynamic Modelling and Control of Flexible Link Manipulators: Methods and Scope - Part 2

Received Date:05 July 2021, Accepted Date:19 November 2021, Published Date:28 December 2021

Abstract

Objectives: This paper addresses two key issues in the area of flexible robotics. The issues are vibration control of flexible links and trajectory control of flexible robots. A brief, yet, significant review is provided that addresses these two issues. Methods: For vibration control of flexible links, possibilities of the use of passive and active damping methods are explored in the literature. After that, the effect of proper trajectory planning to ensure positional accuracy at the end-effector is studied. Findings: After a review of 181 research papers from the year 1970 to 2021, it has been found that the vibration suppression of flexible links can be achieved through the application of viscoelastic materials, piezoelectric materials, and optimum trajectory planning. Recent trends in research in the area of flexible manipulators show that an optimal trajectory can significantly help in reduction of link vibrations and achievement of positional accuracy simultaneously. Novelty: The novelty of the present work lies in exploring the possible application of passive and active damping control methods for vibration suppression of flexible link manipulators. Besides that, the survey also highlights how well planned trajectory may help achieve accurate tip positioning of flexible robots.

Keywords: Flexible manipulator; viscoelastic damping; active vibration control; trajectory planning and control

References

  1. Mishra N, Singh SP. Dynamic modelling and control of flexible link manipulators: methods and scope- Part-1. Indian Journal of Science and Technology. 2021;14(43):3210–3226. doi: 10.17485/ijst/v14i43.1418-i
  2. Zhou XQ, Yu DY, Shao XY, Zhang SQ, Wang S. Research and applications of viscoelastic vibration damping materials: A review. Composite Structures. 2016;136:460–480. doi: 10.1016/j.compstruct.2015.10.014
  3. Grootenhuis P. The control of vibrations with viscoelastic materials. Journal of Sound and Vibration. 1970;11(4):421–433. doi: 10.1016/s0022-460x(70)80004-9
  4. Jones DIG, Parin ML. Technique for measuring damping properties of thin viscoelastic layers. Journal of Sound and Vibration. 1972;24(2):201–210. doi: 10.1016/0022-460x(72)90949-2
  5. Kapur AD, Nakra BC, Chawla DR. Shock response of viscoelastically damped beams. Journal of Sound and Vibration. 1977;55(3):351–362. doi: 10.1016/s0022-460x(77)80018-7
  6. Trompette P, Boillot D, Ravanel MA. The effect of boundary conditions on the vibration of a viscoelastically damped cantilever beam. Journal of Sound and Vibration. 1978;60(3):345–350. doi: 10.1016/s0022-460x(78)80112-6
  7. Ioannides E, Grootenhuis P. A finite element analysis of the harmonic response of damped three-layer plates. Journal of Sound and Vibration. 1979;67(2):203–218. doi: 10.1016/0022-460x(79)90484-x
  8. Ioannides E, Grootenhuis P. An integral equation analysis of the harmonic response of three-layer beams. Journal of Sound and Vibration. 1982;82(1):63–82. doi: 10.1016/0022-460x(82)90543-0
  9. Tzou HS. Dynamic analysis and passive control of viscoelastically damped nonlinear dynamic contacts. Finite Elements in Analysis and Design. 1988;4(3):209–224. doi: 10.1016/0168-874x(88)90008-x
  10. Cao X, Mlejnek HP. Computational prediction and redesign for viscoelastically damped structures. Computer Methods in Applied Mechanics and Engineering. 1995;125(1-4):1–16. doi: 10.1016/0045-7825(95)00798-6
  11. Baber TT, Maddox RA, Orozco CE. A finite element model for harmonically excited viscoelastic sandwich beams. Computers & Structures. 1998;66(1):105–113. doi: 10.1016/s0045-7949(97)00046-1
  12. Barkanov E. Transient response analysis of structures made from viscoelastic materials. International Journal for Numerical Methods in Engineering. 1999;44(3):393–403. doi: 10.1002/(sici)1097-0207(19990130)44:3<393::aid-nme511>3.0.co;2-p
  13. Lei Y, Friswell MI, Adhikari S. A Galerkin method for distributed systems with non-local damping. International Journal of Solids and Structures. 2006;43(11-12):3381–3400. doi: 10.1016/j.ijsolstr.2005.06.058
  14. Dutt JK, Roy H. Viscoelastic modelling of rotor—shaft systems using an operator-based approach. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2011;225(1):73–87. doi: 10.1243/09544062jmes2064
  15. Lei Y, Murmu T, Adhikari S, Friswell MI. Dynamic characteristics of damped viscoelastic nonlocal Euler–Bernoulli beams. European Journal of Mechanics - A/Solids. 2013;42:125–136. doi: 10.1016/j.euromechsol.2013.04.006
  16. Li L, Hu Y, Deng W, Lü L, Ding Z. Dynamics of structural systems with various frequency-dependent damping models. Frontiers of Mechanical Engineering. 2015;10(1):48–63. doi: 10.1007/s11465-015-0330-5
  17. Adhikari S. John Wiley & Sons, Inc.. 2013.
  18. Ghiringhelli GL, Terraneo M. Analytically driven experimental characterisation of damping in viscoelastic materials. Aerospace Science and Technology. 2015;40:75–85. doi: 10.1016/j.ast.2014.10.011
  19. Bonfiglio P, Pompoli F, Horoshenkov KV, Rahim MIBSA. A simplified transfer matrix approach for the determination of the complex modulus of viscoelastic materials. Polymer Testing. 2016;53:180–187. doi: 10.1016/j.polymertesting.2016.05.006
  20. Vergassola G, Boote D, Tonelli A. On the damping loss factor of viscoelastic materials for naval applications. Ships and Offshore Structures. 2018;13(5):466–475. doi: 10.1080/17445302.2018.1425338
  21. Hamdaoui M, Ledi KS, Robin G, Daya EM. Identification of frequency-dependent viscoelastic damped structures using an adjoint method. Journal of Sound and Vibration. 2019;453:237–252. doi: 10.1016/j.jsv.2019.04.022
  22. Oskouie MF, Ansari R, Sadeghi F. Nonlinear vibration analysis of fractional viscoelastic Euler–Bernoulli nanobeams based on the surface stress theory. Acta Mechanica Solida Sinica. 2017;30(4):416–424. doi: 10.1016/j.camss.2017.07.003
  23. Hien TD, Lam NN. Vibration of functionally graded plate resting on viscoelastic elastic foundation subjected to moving loads. IOP Conference Series: Earth and Environmental Science. 2018;143:012024. doi: 10.1088/1755-1315/143/1/012024
  24. Aldawody DA, Hendy MH, Ezzat MA. On dual-phase-lag magneto-thermo-viscoelasticity theory with memory-dependent derivative. Microsystem Technologies. 2019;25(8):2915–2929. doi: 10.1007/s00542-018-4194-6
  25. Hammami C, Balmes E, Guskov M. Numerical design and test on an assembled structure of a bolted joint with viscoelastic damping. Mechanical Systems and Signal Processing. 2016;70-71:714–724. doi: 10.1016/j.ymssp.2015.06.031
  26. Li L, Hu Y. State-Space Method for Viscoelastic Systems Involving General Damping Model. AIAA Journal. 2016;54(10):3290–3295. doi: 10.2514/1.j054180
  27. Ding Z, Li L, Hu Y, Li X, Deng W. State-space based time integration method for structural systems involving multiple nonviscous damping models. Computers & Structures. 2016;171:31–45. doi: 10.1016/j.compstruc.2016.04.002
  28. Ezzat MA, El-Bary AA. Generalized fractional magneto-thermo-viscoelasticity. Microsystem Technologies. 2017;23(6):1767–1777. doi: 10.1007/s00542-016-2904-5
  29. Yamamoto K. Robust walking by resolved viscoelasticity control explicitly considering structure-variability of a humanoid. 2017 IEEE International Conference on Robotics and Automation (ICRA). 2017;p. 3461–3469.
  30. Jiang H, Wang Z, Liu X, Chen X, Jin Y, You X, et al. A two-level approach for solving the inverse kinematics of an extensible soft arm considering viscoelastic behavior. 2017 IEEE International Conference on Robotics and Automation (ICRA). 2017;p. 6127–6160.
  31. Zeng X, Scovazzi G, Abboud N, Colomés O, Rossi S. A dynamic variational multiscale method for viscoelasticity using linear tetrahedral elements. International Journal for Numerical Methods in Engineering. 2017;112(13):1951–2003. doi: 10.1002/nme.5591
  32. Mehnert M, Hossain M, Steinmann P. Numerical modeling of thermo-electro-viscoelasticity with field-dependent material parameters. International Journal of Non-Linear Mechanics. 2018;106:13–24. doi: 10.1016/j.ijnonlinmec.2018.08.016
  33. Drainville RA, Curiel L, Pichardo S. Superposition method for modelling boundaries between media in viscoelastic finite difference time domain simulations. The Journal of the Acoustical Society of America. 2019;146(6):4382–4401. doi: 10.1121/1.5139221
  34. Goryacheva I, Miftakhova A. Modelling of the viscoelastic layer effect in rolling contact. Wear. 2019;430-431:256–262. doi: 10.1016/j.wear.2019.05.021
  35. Jamshidi B, Hematiyan MR, Mahzoon M, Shiah YC. Load identification for a viscoelastic solid by an accurate meshfree sensitivity analysis. Engineering Structures. 2020;203:109895. doi: 10.1016/j.engstruct.2019.109895
  36. Krömer S, Roubíček T. Quasistatic Viscoelasticity with Self-Contact at Large Strains. Journal of Elasticity. 2020;142(2):433–445. doi: 10.1007/s10659-020-09801-9
  37. Brighenti R, Rabczuk T, Zhuang X. Phase field approach for simulating failure of viscoelastic elastomers. European Journal of Mechanics - A/Solids. 2021;85:104092. doi: 10.1016/j.euromechsol.2020.104092
  38. Sherif HA, Almufadi FA. Models for Materials Damping, Loss Factor, and Coefficient of Restitution. Journal of Engineering Materials and Technology. 2020;142(1). doi: 10.1115/1.4044281
  39. Chopra I. Review of State of Art of Smart Structures and Integrated Systems. AIAA Journal. 2002;40(11):2145–2187. Available from: https://arc.aiaa.org/doi/10.2514/2.1561
  40. Cannon RH, Schmitz E. Initial Experiments on the End-Point Control of a Flexible One-Link Robot. The International Journal of Robotics Research. 1984;3(3):62–75. doi: 10.1177/027836498400300303
  41. Sakawa Y, Matsuno F, Fukushima S. Modeling and feedback control of a flexible arm. Journal of Robotic Systems. 1985;2(4):453–472. doi: 10.1002/rob.4620020409
  42. Baz A, Poh S. Performance of an active control system with piezoelectric actuators. Journal of Sound and Vibration. 1988;126(2):327–343. doi: 10.1016/0022-460x(88)90245-3
  43. Murozono M, Sumi S. Active Vibration Control of a Flexible Cantilever Beam by Applying Thermal Bending Moment. Journal of Intelligent Material Systems and Structures. 1994;5(1):21–29. doi: 10.1177/1045389x9400500103
  44. Lesieutre GA, Lee U. A finite element for beams having segmented active constrained layers with frequency-dependent viscoelastics. Smart Materials and Structures. 1996;5(5):615–627. doi: 10.1088/0964-1726/5/5/010
  45. Baillargeon BP, Vel SS. Active Vibration Suppression of Sandwich Beams using Piezoelectric Shear Actuators: Experiments and Numerical Simulations. Journal of Intelligent Material Systems and Structures. 2005;16(6):517–530. doi: 10.1177/1045389x05053154
  46. Aldraihem OJ, Wetherhold RC. Mechanics and control of coupled bending and twisting vibration of laminated beams. Smart Materials and Structures. 1997;6(2):123–133. doi: 10.1088/0964-1726/6/2/001
  47. Benjeddou A, Trindade MA, Ohayon R. A Unified Beam Finite Element Model for Extension and Shear Piezoelectric Actuation Mechanisms. Journal of Intelligent Material Systems and Structures. 1997;8(12):1012–1025. doi: 10.1177/1045389x9700801202
  48. Peng XQ, Lam KY, Liu GR. ACTIVE VIBRATION CONTROL OF COMPOSITE BEAMS WITH PIEZOELECTRICS: A FINITE ELEMENT MODEL WITH THIRD ORDER THEORY. Journal of Sound and Vibration. 1998;209(4):635–650. doi: 10.1006/jsvi.1997.1249
  49. Singh SP, Singh Pruthi H, Agarwal VP. Efficient modal control strategies for active control of vibrations. Journal of Sound and Vibration. 2003;262(3):563–575. doi: 10.1016/s0022-460x(03)00111-1
  50. Sun D, Shan J, Su Y, Liu HHT, Lam C. Hybrid control of a rotational flexible beam using enhanced PD feedback with a nonlinear differentiator and PZT actuators. Smart Materials and Structures. 2005;14(1):69–78. doi: 10.1088/0964-1726/14/1/007
  51. Gardonio P, Elliott SJ. Modal response of a beam with a sensor–actuator pair for the implementation of velocity feedback control. Journal of Sound and Vibration. 2005;284(1-2):1–22. doi: 10.1016/j.jsv.2004.06.018
  52. Sharma M, Singh SP, Sachdeva BL. Fuzzy logic based modal space control of a cantilevered beam instrumented with piezoelectric patches. Smart Materials and Structures. 2005;14(5):1017–1024. doi: 10.1088/0964-1726/14/5/040
  53. Gatti G, Brennan MJ, Gardonio P. Active damping of a beam using a physically collocated accelerometer and piezoelectric patch actuator. Journal of Sound and Vibration. 2007;303(3-5):798–813. doi: 10.1016/j.jsv.2007.02.006
  54. Vasques CMA, Dias Rodrigues J. Combined feedback/feedforward active control of vibration of beams with ACLD treatments: Numerical simulation. Computers & Structures. 2008;86(3-5):292–306. doi: 10.1016/j.compstruc.2007.01.027
  55. Belouettar S, Azrar L, Daya EM, Laptev V, Potier-Ferry M. Active control of nonlinear vibration of sandwich piezoelectric beams: A simplified approach. Computers & Structures. 2008;86(3-5):386–397. doi: 10.1016/j.compstruc.2007.02.009
  56. Qiu Zc, Han Jd, Zhang Xm, Wang Yc, Wu Zw. Active vibration control of a flexible beam using a non-collocated acceleration sensor and piezoelectric patch actuator. Journal of Sound and Vibration. 2009;326(3-5):438–455. doi: 10.1016/j.jsv.2009.05.034
  57. Gupta V, Sharma M, Thakur N, Singh SP. Active vibration control of a smart plate using a piezoelectric sensor–actuator pair at elevated temperatures. Smart Materials and Structures. 2011;20(10):105023. doi: 10.1088/0964-1726/20/10/105023
  58. Yavuz Ş, Malgaca L, Karagülle H. Vibration control of a single-link flexible composite manipulator. Composite Structures. 2016;140:684–691. doi: 10.1016/j.compstruct.2016.01.037
  59. Malgaca L, Yavuz Ş, Akdağ M, Karagülle H. Residual vibration control of a single-link flexible curved manipulator. Elsevier BV. 2016. doi: 10.1016/j.simpat.2016.06.007 Available from: https://dx.doi.org/10.1016/j.simpat.2016.06.007
  60. Yaqoob Yasin M, Kapuria S. Influence of piezoelectric nonlinearity on active vibration suppression of smart laminated shells using strong field actuation. Journal of Vibration and Control. 2018;24(3):505–526.
  61. He W, Ouyang Y, Hong J. Vibration Control of a Flexible Robotic Manipulator in the Presence of Input Deadzone. IEEE Transactions on Industrial Informatics. 2017;13(1):48–59. doi: 10.1109/tii.2016.2608739
  62. Lu E, Li W, Yang X, Wang Y, Liu Y. Optimal placement and active vibration control for piezoelectric smart flexible manipulators using modal H2 norm. Journal of Intelligent Material Systems and Structures. 2018;29(11):2333–2343. doi: 10.1177/1045389x18770851
  63. Varma NSS, Krishna SSV, Vemuluri DRB. Active Vibration Control of Laminated Composite Plates by using External Patches. International Journal of Engineering Research and Applications. 2017;07(05):57–65. doi: 10.9790/9622-0705015765
  64. Medeiros Pe De M, Bessa W, Savi M, Souza De Paula A. Vibration Control of Smart Structures With a Fuzzy Sliding Mode Control Scheme. 24th ABCM International Congress Mechanical Engineering. .
  65. Chuaqui TR, Roque CM, Ribeiro P. Active vibration control of piezoelectric smart beams with radial basis function generated finite difference collocation method. Journal of Intelligent Material Systems and Structures. 2018;29(13):2728–2743. doi: 10.1177/1045389x18778363
  66. Altammar H, Dhingra A, Salowitz N. Initial study of internally embedded shear-mode piezoelectric transducers for the detection of joint defects in laminate structures. Journal of Intelligent Material Systems and Structures. 2019;30(15):2314–2330. doi: 10.1177/1045389x19862624
  67. Carrison P, Altammar H, Salowitz N. Selective actuation and sensing of antisymmetric ultrasonic waves using shear-deforming piezoelectric transducers. Structural Health Monitoring. 2021;20(3):978–989. doi: 10.1177/1475921720944933
  68. Reddy RS, Panda S, Gupta A. Nonlinear dynamics and active control of smart beams using shear/extensional mode piezoelectric actuators. International Journal of Mechanical Sciences. 2021;204:106495. doi: 10.1016/j.ijmecsci.2021.106495
  69. Gupta A, Panda S, Reddy RS. Shear actuation-based hybrid damping treatment of sandwich structures using a graphite particle-filled viscoelastic layer. Journal of Intelligent Material Systems and Structures. 2021;32(20):2477–2493. doi: 10.1177/1045389x211002649
  70. Zorić ND, Tomović AM, Obradović AM, Radulović RD, Petrović GR. Active vibration control of smart composite plates using optimized self-tuning fuzzy logic controller with optimization of placement, sizing and orientation of PFRC actuators. Journal of Sound and Vibration. 2019;456:173–198. doi: 10.1016/j.jsv.2019.05.035
  71. Sakib S, Estiaquearefin AM, Mursalin R, Naim-Ul-Hasan. Effect of lead zirconate titanate piezoceramic material on the deflection of MEMS based sandwiched cantilever beamfor piezoelectric actuation. 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON). 2017;p. 388–91.
  72. Gonçalves JF, De Leon DM, Perondi EA. A simultaneous approach for compliance minimization and piezoelectric actuator design considering the polarization profile. International Journal for Numerical Methods in Engineering. 2020;121(2):334–353. doi: 10.1002/nme.6211
  73. Singh K, Kumar R, Talha M, Narain V. Vibration Control of Smart Cantilever Beam Using Fuzzy Logic Controller. In: Lecture Notes in Mechanical Engineering. (pp. 1801-1812) Springer Singapore. 2022.
  74. Marinangeli L, Alijani F, HosseinNia SH. A Fractional-order Positive Position Feedback Compensator for Active Vibration Control. IFAC-PapersOnLine. 2017;50(1):12809–12816. doi: 10.1016/j.ifacol.2017.08.1929
  75. Kleinwort R, Herb J, Kapfinger P, Sellemond M, Weiss C, Buschka M, et al. Experimental comparison of different automatically tuned control strategies for active vibration control. CIRP Journal of Manufacturing Science and Technology. 2021;35:281–297. doi: 10.1016/j.cirpj.2021.06.019
  76. Yang DH, Shin JH, Lee H, Kim SK, Kwak MK. Active vibration control of structure by Active Mass Damper and Multi-Modal Negative Acceleration Feedback control algorithm. Journal of Sound and Vibration. 2017;392:18–30. doi: 10.1016/j.jsv.2016.12.036
  77. PEUKERT C, PÖHLMANN P, MERX M, IHLENFELDT S, MÜLLER J. INVESTIGATION OF LOCAL AND MODAL BASED ACTIVE VIBRATION CONTROL STRATEGIES ON THE EXAMPLE OF AN ELASTIC SYSTEM. Journal of Machine Engineering. 2019;19(2):32–45. doi: 10.5604/01.3001.0013.2222
  78. Zhao P, Zhou Y. Active vibration control of flexible-joint manipulators using accelerometers. Industrial Robot: the international journal of robotics research and application. 2019;47:33–44. Available from: https://www.emerald.com/insight/content/doi/10.1108/IR-07-2019-0144/full/html
  79. Shin JH, Han S, Kwak MK. Active vibration control of plate by active mass damper and negative acceleration feedback control algorithms. Journal of Low Frequency Noise, Vibration and Active Control. 2021;40(1):413–426.
  80. Wang X, Morandini M, Masarati P. Velocity feedback damping of piezo-actuated wings. Composite Structures. 2017;174:221–232. doi: 10.1016/j.compstruct.2017.04.016
  81. Rahman N, Alam MN, Junaid M. Active vibration control of composite shallow shells: An integrated approach. JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES. 2018;12(1):3354–3369. Available from: https://pdfs.semanticscholar.org/7d05/6f2b8ecd536df0957c2483354ea6439aac99.pdf
  82. Zhang B, Jin K, Kou Y, Zheng X. The model of active vibration control based on giant magnetostrictive materials. Smart Materials and Structures. 2019;28(8):085028. doi: 10.1088/1361-665x/ab2dd0
  83. Garcia-Perez OA, Silva-Navarro G, Peza-Solis JF. Flexible-link robots with combined trajectory tracking and vibration control. Applied Mathematical Modelling. 2019;70:285–298. doi: 10.1016/j.apm.2019.01.035
  84. Luca AD. Trajectory control of flexible manipulators. In: Lecture Notes in Control and Information Sciences. (pp. 83-104) Springer Berlin Heidelberg. 1998.
  85. Lewis FL, Dawson DM, Abdallah TC. 2004.
  86. Spong MW, Vidyasagar M, Seth H. Robot Modelling and Control. 2005.
  87. Spong M, Vidyasagar M. Robust linear compensator design for nonlinear robotic control. IEEE Journal on Robotics and Automation. 1987;3(4):345–351. doi: 10.1109/jra.1987.1087110
  88. Ortega R, Spong MW. Adaptive motion control of rigid robots: A tutorial. Automatica. 1989;25(6):877–888. doi: 10.1016/0005-1098(89)90054-x
  89. Slotine JJE, Yang HS. Improving the efficiency of time-optimal path-following algorithms. IEEE Transactions on Robotics and Automation. 1989;5(1):118–124. doi: 10.1109/70.88024
  90. Shiller Z, Chang H. Trajectory Preshaping for High-Speed Articulated Systems. Journal of Dynamic Systems, Measurement, and Control. 1995;117(3):304–310. doi: 10.1115/1.2799120
  91. Aurelio P, Antonio V. Global minimum-jerk trajectory planning of robot manipulators. IEEE Transactions on Industrial Electronics. 2000;47(1):140–149. Available from: 10.1109/41.824136
  92. Gasparetto A, Zanotto V. A new method for smooth trajectory planning of robot manipulators. Mechanism and Machine Theory. 2007;42(4):455–471. doi: 10.1016/j.mechmachtheory.2006.04.002
  93. Pellicciari M, Berselli G, Balugani F. On Designing Optimal Trajectories for Servo-Actuated Mechanisms: Detailed Virtual Prototyping and Experimental Evaluation. IEEE/ASME Transactions on Mechatronics. 2015;20(5):2039–2052. doi: 10.1109/tmech.2014.2361759
  94. Green A, Sasiadek JZ. Dynamics and Trajectory Tracking Control of a Two-Link Robot Manipulator. Journal of Vibration and Control. 2004;10(10):1415–1440. doi: 10.1177/1077546304042058
  95. Sato O, Sato A, Takahashi N, Yokomichi M. Analysis of the two-link manipulator in consideration of the horizontal motion about object. Artificial Life and Robotics. 2016;21(1):43–48. doi: 10.1007/s10015-015-0251-8
  96. Lismonde A, Sonneville V, Brüls O. A geometric optimization method for the trajectory planning of flexible manipulators. Multibody System Dynamics. 2019;47(4):347–362. doi: 10.1007/s11044-019-09695-z
  97. Giorgio I, Del Vescovo D. Energy-based trajectory tracking and vibration control for multilink highly flexible manipulators. Mathematics and Mechanics of Complex Systems. 2019;7(2):159–174. doi: 10.2140/memocs.2019.7.159
  98. Wang M, Luo J, Yuan J, Walter U. Coordinated trajectory planning of dual-arm space robot using constrained particle swarm optimization. Acta Astronautica. 2018;146:259–272. doi: 10.1016/j.actaastro.2018.03.012
  99. Xin P, Rong J, Yang Y, Xiang D, Xiang Y. Trajectory planning with residual vibration suppression for space manipulator based on particle swarm optimization algorithm. Advances in Mechanical Engineering. 2017;9(4):168781401769269. doi: 10.1177/1687814017692694
  100. Hizarci H, Ikizoglu S. Position Control of Flexible Manipulator using PSO-tuned PID Controller. 2019 Innovations in Intelligent Systems and Applications Conference (ASYU). 2019;p. 1–5. Available from: https://ieeexplore.ieee.org/document/8946440/
  101. Li Y, Ge SS, Wei Q, Gan T, Tao X. An Online Trajectory Planning Method of a Flexible-Link Manipulator Aiming at Vibration Suppression. IEEE Access. 2020;8:130616–130632. doi: 10.1109/access.2020.3009526
  102. Esfandiar H, Korayem H, Haghpanahi M, M. Optimal Trajectory Planning for Flexible Mobile Manipulators under Large Deformation Using Meta-heuristic Optimization Methods. International Journal of Advanced Design and Manufacturing Technology. 2016;9(1):57–72.
  103. Ratiu M, Adriana Prichici M. Industrial robot trajectory optimization- a review. MATEC Web of Conferences. 2017;126:02005. doi: 10.1051/matecconf/201712602005
  104. Shedbale N, Muley PV. Review on Viscoelastic Materials used in Viscoelastic Dampers. International Research Journal of Engineering and Technology. 2017;4(7):1–7. Available from: www.irjet.net
  105. Karagülle H, Malgaca L, Öktem HF. Analysis of active vibration control in smart structures by ANSYS. Smart Materials and Structures. 2004;13(4):661–667. doi: 10.1088/0964-1726/13/4/003
  106. Prado GS, Goncalves BW, Santos H, Dos. UNCERTAINTIES ON ADHESIVE LAYER FOR A CANTILEVER BEAM : PASSIVE CONTROL. 24th ABCM International Congress of Mechanical Engineering. 2017. Available from: http://www.sistema.abcm.org.br/articleFiles/download/12159
  107. Schoeftner J, Benjeddou A. Development of accurate piezoelectric beam models based on Boley’s method. Composite Structures. 2019;223:110970. doi: 10.1016/j.compstruct.2019.110970
  108. Trindade MA. Simultaneous Extension and Shear Piezoelectric Actuation for Active Vibration Control of Sandwich Beams. Journal of Intelligent Material Systems and Structures. 2007;18(6):591–600. Available from: https://doi.org/10.1177/1045389X06076592
  109. Benjeddou A, Trindade MA, Ohayon R. New Shear Actuated Smart Structure Beam Finite Element. AIAA Journal. 1999;37(3):378–383. doi: 10.2514/2.719
  110. Kapuria S, Hagedorn P. Unified efficient layerwise theory for smart beams with segmented extension/shear mode, piezoelectric actuators and sensors. Journal of Mechanics of Materials and Structures. 2007;2(7):1267–1298. doi: 10.2140/jomms.2007.2.1267
  111. Shin K, Mckay N. Automatic generation of trajectory planners for industrial robots. Proceedings 1986 IEEE International Conference on Robotics and Automation. Institute of Electrical and Electronics Engineers. 1986;p. 260–266. Available from: http://ieeexplore.ieee.org/document/1087635/
  112. Valente A, Baraldo S, Carpanzano E. Smooth trajectory generation for industrial robots performing high precision assembly processes. CIRP Annals. 2017;66(1):17–20. doi: 10.1016/j.cirp.2017.04.105
  113. Yao J, Huang Y, Wan Z, Zhang L, Sun C, Zhang X. Minimum-time trajectory planning for an inchworm-like climbing robot based on quantum-behaved particle swarm optimization. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2017;231(18):3443–3454. doi: 10.1177/0954406216646138
  114. Shen P, Zhang X, Fang Y. Essential Properties of Numerical Integration for Time-Optimal Path-Constrained Trajectory Planning. IEEE Robotics and Automation Letters. 2017;2(2):888–895. doi: 10.1109/lra.2017.2655580
  115. Abu-Dakka FJ, Assad IF, Alkhdour RM, Abderahim M. Statistical evaluation of an evolutionary algorithm for minimum time trajectory planning problem for industrial robots. Springer Science and Business Media LLC. 2017. doi: 10.1007/s00170-016-9050-1 Available from: https://dx.doi.org/10.1007/s00170-016-9050-1
  116. Reiter A, Muller A, Gattringer H. On Higher Order Inverse Kinematics Methods in Time-Optimal Trajectory Planning for Kinematically Redundant Manipulators. IEEE Transactions on Industrial Informatics. 2018;14(4):1681–1690. doi: 10.1109/tii.2018.2792002
  117. Shen P, Zhang X, Fang Y. Complete and Time-Optimal Path-Constrained Trajectory Planning With Torque and Velocity Constraints: Theory and Applications. IEEE/ASME Transactions on Mechatronics. 2018;23(2):735–746. doi: 10.1109/tmech.2018.2810828
  118. Zhao K, Li S, Kang Z. Smooth minimum time trajectory planning with minimal feed fluctuation. The International Journal of Advanced Manufacturing Technology. 2019;105(1-4):1099–1111. doi: 10.1007/s00170-019-04308-7
  119. Liu Y, Du Z, Zhang S. Minimum-time Trajectory Planning for Residual Vibration Suppression of Flexible Manipulator Carrying a Payload. IOP Conference Series: Materials Science and Engineering. 2020;853(1):012044. doi: 10.1088/1757-899x/853/1/012044
  120. Wang X, Sun W, Li E, Song X. Energy-minimum optimization of the intelligent excavating process for large cable shovel through trajectory planning. Structural and Multidisciplinary Optimization. 2018;58(5):2219–2237. doi: 10.1007/s00158-018-2011-6
  121. Carabin G, Vidoni R, Wehrle E. Energy Saving in Mechatronic Systems Through Optimal Point-to-Point Trajectory Generation via Standard Primitives. In: Mechanisms and Machine Science. (pp. 20-28) Springer International Publishing. 2019.
  122. Wu G, Zhao W, Zhang X. Optimum time-energy-jerk trajectory planning for serial robotic manipulators by reparameterized quintic NURBS curves. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2021;235(19):4382–4393. doi: 10.1177/0954406220969734
  123. Du H, Du JM, Chen LA, Mai ZW, Liu XH, Cai HZ. Multi-DOF Robotic Manipulator Trajectory Controlling based on Minimum Energy Optimization. Advances in Intelligent Systems Research. 2015;123:345–354.
  124. Ho PM, Uchiyama N, Sano S, Honda Y, Kato A, Yonezawa T. Simple Motion Trajectory Generation for Energy Saving of Industrial Machines. SICE Journal of Control, Measurement, and System Integration. 2014;7(1):29–34. doi: 10.9746/jcmsi.7.29
  125. Ramabalan S, Saravanan R, Krishnaraj R, Ebenezer GR, N. Multi criteria trajectory planning with nurbs curves for cooperative robots. International Journal of Mechanical Engineering and Technology. 2017;8(5):959–73. Available from: https://iaeme.com/MasterAdmin/Journal_uploads/IJMET/VOLUME_8_ISSUE_5/IJMET_08_05_101.pdf
  126. Lu S, Zhao J, Jiang L, Liu H. Solving the Time-Jerk Optimal Trajectory Planning Problem of a Robot Using Augmented Lagrange Constrained Particle Swarm Optimization. Mathematical Problems in Engineering. 2017;2017:1–10. doi: 10.1155/2017/1921479
  127. Rout A, Dileep M, Mohanta GB, Deepak B, Biswal B. Optimal time-jerk trajectory planning of 6 axis welding robot using TLBO method. Procedia Computer Science. 2018;133:537–544. doi: 10.1016/j.procs.2018.07.067
  128. Rojas RA, Garcia MAR, Wehrle E, Vidoni R. A Variational Approach to Minimum-Jerk Trajectories for Psychological Safety in Collaborative Assembly Stations. IEEE Robotics and Automation Letters. 2019;4(2):823–829. doi: 10.1109/lra.2019.2893018
  129. Fang Y, Hu J, Liu W, Shao Q, Qi J, Peng Y. Smooth and time-optimal S-curve trajectory planning for automated robots and machines. Mechanism and Machine Theory. 2019;137:127–153. doi: 10.1016/j.mechmachtheory.2019.03.019
  130. Zhou J, Chen M, Chen J, Jia S. Optimal time-jerk trajectory planning for the landing and walking integration mechanism using adaptive genetic algorithm method. Review of Scientific Instruments. 2020;91(4):044501. doi: 10.1063/1.5133369
  131. Oliveira PW, Barreto GA, Thé GAP. A General Framework for Optimal Tuning of PID-like Controllers for Minimum Jerk Robotic Trajectories. Journal of Intelligent & Robotic Systems. 2020;99(3-4):467–486. doi: 10.1007/s10846-019-01121-y
  132. Devi MA, Prakash CPS, Jadhav PD, Hebbar PS, Mohsin M, Shashank SK. Minimum Jerk Trajectory Planning of PUMA560 with Intelligent Computation using ANN. In: 2021 6th International Conference on Inventive Computation Technologies (ICICT). (pp. 544-50) IEEE. 2021.
  133. Kyriakopoulos KJ, Saridis GN. Minimum jerk path generation. In: Proceedings. 1988 IEEE International Conference on Robotics and Automation. (pp. 364-373) IEEE Comput. Soc. Press. 1988.
  134. Rajan V. Minimum time trajectory planning. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation. (pp. 759-64) Institute of Electrical and Electronics Engineers. 1985.
  135. Pei Y, Liu Z, Xu J, Yang C. Minimum-time trajectory planning for a 4-dof manipulator considering motion stability and obstacle avoidance. 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). 2020;p. 207–218. Available from: https://ieeexplore.ieee.org/document/9421588/
  136. Gregory J, Olivares A, Staffetti E. Energy-optimal trajectory planning for robot manipulators with holonomic constraints. Systems & Control Letters. 2012;61(2):279–291. doi: 10.1016/j.sysconle.2011.11.005
  137. Korayem MH, Rahimi HN, Nikoobin A. Mathematical modeling and trajectory planning of mobile manipulators with flexible links and joints. Applied Mathematical Modelling. 2012;36(7):3229–3244. doi: 10.1016/j.apm.2011.10.002
  138. Wigstrom O, Lennartson B, Vergnano A, Breitholtz C. High-Level Scheduling of Energy Optimal Trajectories. IEEE Transactions on Automation Science and Engineering. 2013;10(1):57–64. doi: 10.1109/tase.2012.2198816
  139. Zhang T, Zhang M, Zou Y. Time-optimal and Smooth Trajectory Planning for Robot Manipulators. International Journal of Control, Automation and Systems. 2021;19(1):521–531. doi: 10.1007/s12555-019-0703-3
  140. Faroni M, Beschi M, Visioli A, Pedrocchi N. A real-time trajectory planning method for enhanced path-tracking performance of serial manipulators. Mechanism and Machine Theory. 2021;156:104152. doi: 10.1016/j.mechmachtheory.2020.104152
  141. Huang MS, Hsu YL, Fung RF. Minimum-Energy Point-to-Point Trajectory Planning for a Motor-Toggle Servomechanism. IEEE/ASME Transactions on Mechatronics. 2012;17(2):337–344. doi: 10.1109/tmech.2010.2103366
  142. Kobilarov M. Nonlinear Trajectory Control of Multi-body Aerial Manipulators. Journal of Intelligent & Robotic Systems. 2014;73(1-4):679–692. doi: 10.1007/s10846-013-9934-3
  143. Hussein MT. A review on vision-based control of flexible manipulators. Advanced Robotics. 2015;29(24):1575–1585.
  144. He W, Gao H, Zhou C, Yang C, Li Z. Reinforcement Learning Control of a Flexible Two-Link Manipulator: An Experimental Investigation. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2021;51(12):7326–7336. doi: 10.1109/tsmc.2020.2975232
  145. Mishra N, Singh SP. Dynamic modelling and control of flexible link manipulators: methods and scope- Part-1. Indian Journal of Science and Technology. 2021;14(43):3210–3226. doi: 10.17485/ijst/v14i43.1418-i
  146. Zhou XQ, Yu DY, Shao XY, Zhang SQ, Wang S. Research and applications of viscoelastic vibration damping materials: A review. Composite Structures. 2016;136:460–480. doi: 10.1016/j.compstruct.2015.10.014
  147. Grootenhuis P. The control of vibrations with viscoelastic materials. Journal of Sound and Vibration. 1970;11(4):421–433. doi: 10.1016/s0022-460x(70)80004-9
  148. Jones DIG, Parin ML. Technique for measuring damping properties of thin viscoelastic layers. Journal of Sound and Vibration. 1972;24(2):201–210. doi: 10.1016/0022-460x(72)90949-2
  149. Kapur AD, Nakra BC, Chawla DR. Shock response of viscoelastically damped beams. Journal of Sound and Vibration. 1977;55(3):351–362. doi: 10.1016/s0022-460x(77)80018-7
  150. Trompette P, Boillot D, Ravanel MA. The effect of boundary conditions on the vibration of a viscoelastically damped cantilever beam. Journal of Sound and Vibration. 1978;60(3):345–350. doi: 10.1016/s0022-460x(78)80112-6
  151. Ioannides E, Grootenhuis P. A finite element analysis of the harmonic response of damped three-layer plates. Journal of Sound and Vibration. 1979;67(2):203–218. doi: 10.1016/0022-460x(79)90484-x
  152. Ioannides E, Grootenhuis P. An integral equation analysis of the harmonic response of three-layer beams. Journal of Sound and Vibration. 1982;82(1):63–82. doi: 10.1016/0022-460x(82)90543-0
  153. Tzou HS. Dynamic analysis and passive control of viscoelastically damped nonlinear dynamic contacts. Finite Elements in Analysis and Design. 1988;4(3):209–224. doi: 10.1016/0168-874x(88)90008-x
  154. Cao X, Mlejnek HP. Computational prediction and redesign for viscoelastically damped structures. Computer Methods in Applied Mechanics and Engineering. 1995;125(1-4):1–16. doi: 10.1016/0045-7825(95)00798-6
  155. Baber TT, Maddox RA, Orozco CE. A finite element model for harmonically excited viscoelastic sandwich beams. Computers & Structures. 1998;66(1):105–113. doi: 10.1016/s0045-7949(97)00046-1
  156. Barkanov E. Transient response analysis of structures made from viscoelastic materials. International Journal for Numerical Methods in Engineering. 1999;44(3):393–403. doi: 10.1002/(sici)1097-0207(19990130)44:3<393::aid-nme511>3.0.co;2-p
  157. Lei Y, Friswell MI, Adhikari S. A Galerkin method for distributed systems with non-local damping. International Journal of Solids and Structures. 2006;43(11-12):3381–3400. doi: 10.1016/j.ijsolstr.2005.06.058
  158. Dutt JK, Roy H. Viscoelastic modelling of rotor—shaft systems using an operator-based approach. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2011;225(1):73–87. doi: 10.1243/09544062jmes2064
  159. Lei Y, Murmu T, Adhikari S, Friswell MI. Dynamic characteristics of damped viscoelastic nonlocal Euler–Bernoulli beams. European Journal of Mechanics - A/Solids. 2013;42:125–136. doi: 10.1016/j.euromechsol.2013.04.006
  160. Li L, Hu Y, Deng W, Lü L, Ding Z. Dynamics of structural systems with various frequency-dependent damping models. Frontiers of Mechanical Engineering. 2015;10(1):48–63. doi: 10.1007/s11465-015-0330-5
  161. Adhikari S. John Wiley & Sons, Inc.. 2013.
  162. Ghiringhelli GL, Terraneo M. Analytically driven experimental characterisation of damping in viscoelastic materials. Aerospace Science and Technology. 2015;40:75–85. doi: 10.1016/j.ast.2014.10.011
  163. Bonfiglio P, Pompoli F, Horoshenkov KV, Rahim MIBSA. A simplified transfer matrix approach for the determination of the complex modulus of viscoelastic materials. Polymer Testing. 2016;53:180–187. doi: 10.1016/j.polymertesting.2016.05.006
  164. Vergassola G, Boote D, Tonelli A. On the damping loss factor of viscoelastic materials for naval applications. Ships and Offshore Structures. 2018;13(5):466–475. doi: 10.1080/17445302.2018.1425338
  165. Hamdaoui M, Ledi KS, Robin G, Daya EM. Identification of frequency-dependent viscoelastic damped structures using an adjoint method. Journal of Sound and Vibration. 2019;453:237–252. doi: 10.1016/j.jsv.2019.04.022
  166. Oskouie MF, Ansari R, Sadeghi F. Nonlinear vibration analysis of fractional viscoelastic Euler–Bernoulli nanobeams based on the surface stress theory. Acta Mechanica Solida Sinica. 2017;30(4):416–424. doi: 10.1016/j.camss.2017.07.003
  167. Hien TD, Lam NN. Vibration of functionally graded plate resting on viscoelastic elastic foundation subjected to moving loads. IOP Conference Series: Earth and Environmental Science. 2018;143:012024. doi: 10.1088/1755-1315/143/1/012024
  168. Aldawody DA, Hendy MH, Ezzat MA. On dual-phase-lag magneto-thermo-viscoelasticity theory with memory-dependent derivative. Microsystem Technologies. 2019;25(8):2915–2929. doi: 10.1007/s00542-018-4194-6
  169. Hammami C, Balmes E, Guskov M. Numerical design and test on an assembled structure of a bolted joint with viscoelastic damping. Mechanical Systems and Signal Processing. 2016;70-71:714–724. doi: 10.1016/j.ymssp.2015.06.031
  170. Li L, Hu Y. State-Space Method for Viscoelastic Systems Involving General Damping Model. AIAA Journal. 2016;54(10):3290–3295. doi: 10.2514/1.j054180
  171. Ding Z, Li L, Hu Y, Li X, Deng W. State-space based time integration method for structural systems involving multiple nonviscous damping models. Computers & Structures. 2016;171:31–45. doi: 10.1016/j.compstruc.2016.04.002
  172. Ezzat MA, El-Bary AA. Generalized fractional magneto-thermo-viscoelasticity. Microsystem Technologies. 2017;23(6):1767–1777. doi: 10.1007/s00542-016-2904-5
  173. Yamamoto K. Robust walking by resolved viscoelasticity control explicitly considering structure-variability of a humanoid. 2017 IEEE International Conference on Robotics and Automation (ICRA). 2017;p. 3461–3469.
  174. Jiang H, Wang Z, Liu X, Chen X, Jin Y, You X, et al. A two-level approach for solving the inverse kinematics of an extensible soft arm considering viscoelastic behavior. 2017 IEEE International Conference on Robotics and Automation (ICRA). 2017;p. 6127–6160.
  175. Zeng X, Scovazzi G, Abboud N, Colomés O, Rossi S. A dynamic variational multiscale method for viscoelasticity using linear tetrahedral elements. International Journal for Numerical Methods in Engineering. 2017;112(13):1951–2003. doi: 10.1002/nme.5591
  176. Mehnert M, Hossain M, Steinmann P. Numerical modeling of thermo-electro-viscoelasticity with field-dependent material parameters. International Journal of Non-Linear Mechanics. 2018;106:13–24. doi: 10.1016/j.ijnonlinmec.2018.08.016
  177. Drainville RA, Curiel L, Pichardo S. Superposition method for modelling boundaries between media in viscoelastic finite difference time domain simulations. The Journal of the Acoustical Society of America. 2019;146(6):4382–4401. doi: 10.1121/1.5139221
  178. Goryacheva I, Miftakhova A. Modelling of the viscoelastic layer effect in rolling contact. Wear. 2019;430-431:256–262. doi: 10.1016/j.wear.2019.05.021
  179. Jamshidi B, Hematiyan MR, Mahzoon M, Shiah YC. Load identification for a viscoelastic solid by an accurate meshfree sensitivity analysis. Engineering Structures. 2020;203:109895. doi: 10.1016/j.engstruct.2019.109895
  180. Krömer S, Roubíček T. Quasistatic Viscoelasticity with Self-Contact at Large Strains. Journal of Elasticity. 2020;142(2):433–445. doi: 10.1007/s10659-020-09801-9
  181. Brighenti R, Rabczuk T, Zhuang X. Phase field approach for simulating failure of viscoelastic elastomers. European Journal of Mechanics - A/Solids. 2021;85:104092. doi: 10.1016/j.euromechsol.2020.104092
  182. Sherif HA, Almufadi FA. Models for Materials Damping, Loss Factor, and Coefficient of Restitution. Journal of Engineering Materials and Technology. 2020;142(1). doi: 10.1115/1.4044281
  183. Chopra I. Review of State of Art of Smart Structures and Integrated Systems. AIAA Journal. 2002;40(11):2145–2187. Available from: https://arc.aiaa.org/doi/10.2514/2.1561
  184. Cannon RH, Schmitz E. Initial Experiments on the End-Point Control of a Flexible One-Link Robot. The International Journal of Robotics Research. 1984;3(3):62–75. doi: 10.1177/027836498400300303
  185. Sakawa Y, Matsuno F, Fukushima S. Modeling and feedback control of a flexible arm. Journal of Robotic Systems. 1985;2(4):453–472. doi: 10.1002/rob.4620020409
  186. Baz A, Poh S. Performance of an active control system with piezoelectric actuators. Journal of Sound and Vibration. 1988;126(2):327–343. doi: 10.1016/0022-460x(88)90245-3
  187. Murozono M, Sumi S. Active Vibration Control of a Flexible Cantilever Beam by Applying Thermal Bending Moment. Journal of Intelligent Material Systems and Structures. 1994;5(1):21–29. doi: 10.1177/1045389x9400500103
  188. Lesieutre GA, Lee U. A finite element for beams having segmented active constrained layers with frequency-dependent viscoelastics. Smart Materials and Structures. 1996;5(5):615–627. doi: 10.1088/0964-1726/5/5/010
  189. Baillargeon BP, Vel SS. Active Vibration Suppression of Sandwich Beams using Piezoelectric Shear Actuators: Experiments and Numerical Simulations. Journal of Intelligent Material Systems and Structures. 2005;16(6):517–530. doi: 10.1177/1045389x05053154
  190. Aldraihem OJ, Wetherhold RC. Mechanics and control of coupled bending and twisting vibration of laminated beams. Smart Materials and Structures. 1997;6(2):123–133. doi: 10.1088/0964-1726/6/2/001
  191. Benjeddou A, Trindade MA, Ohayon R. A Unified Beam Finite Element Model for Extension and Shear Piezoelectric Actuation Mechanisms. Journal of Intelligent Material Systems and Structures. 1997;8(12):1012–1025. doi: 10.1177/1045389x9700801202
  192. Peng XQ, Lam KY, Liu GR. ACTIVE VIBRATION CONTROL OF COMPOSITE BEAMS WITH PIEZOELECTRICS: A FINITE ELEMENT MODEL WITH THIRD ORDER THEORY. Journal of Sound and Vibration. 1998;209(4):635–650. doi: 10.1006/jsvi.1997.1249
  193. Singh SP, Singh Pruthi H, Agarwal VP. Efficient modal control strategies for active control of vibrations. Journal of Sound and Vibration. 2003;262(3):563–575. doi: 10.1016/s0022-460x(03)00111-1
  194. Sun D, Shan J, Su Y, Liu HHT, Lam C. Hybrid control of a rotational flexible beam using enhanced PD feedback with a nonlinear differentiator and PZT actuators. Smart Materials and Structures. 2005;14(1):69–78. doi: 10.1088/0964-1726/14/1/007
  195. Gardonio P, Elliott SJ. Modal response of a beam with a sensor–actuator pair for the implementation of velocity feedback control. Journal of Sound and Vibration. 2005;284(1-2):1–22. doi: 10.1016/j.jsv.2004.06.018
  196. Sharma M, Singh SP, Sachdeva BL. Fuzzy logic based modal space control of a cantilevered beam instrumented with piezoelectric patches. Smart Materials and Structures. 2005;14(5):1017–1024. doi: 10.1088/0964-1726/14/5/040
  197. Gatti G, Brennan MJ, Gardonio P. Active damping of a beam using a physically collocated accelerometer and piezoelectric patch actuator. Journal of Sound and Vibration. 2007;303(3-5):798–813. doi: 10.1016/j.jsv.2007.02.006
  198. Vasques CMA, Dias Rodrigues J. Combined feedback/feedforward active control of vibration of beams with ACLD treatments: Numerical simulation. Computers & Structures. 2008;86(3-5):292–306. doi: 10.1016/j.compstruc.2007.01.027
  199. Belouettar S, Azrar L, Daya EM, Laptev V, Potier-Ferry M. Active control of nonlinear vibration of sandwich piezoelectric beams: A simplified approach. Computers & Structures. 2008;86(3-5):386–397. doi: 10.1016/j.compstruc.2007.02.009
  200. Qiu Zc, Han Jd, Zhang Xm, Wang Yc, Wu Zw. Active vibration control of a flexible beam using a non-collocated acceleration sensor and piezoelectric patch actuator. Journal of Sound and Vibration. 2009;326(3-5):438–455. doi: 10.1016/j.jsv.2009.05.034
  201. Gupta V, Sharma M, Thakur N, Singh SP. Active vibration control of a smart plate using a piezoelectric sensor–actuator pair at elevated temperatures. Smart Materials and Structures. 2011;20(10):105023. doi: 10.1088/0964-1726/20/10/105023
  202. Yavuz Ş, Malgaca L, Karagülle H. Vibration control of a single-link flexible composite manipulator. Composite Structures. 2016;140:684–691. doi: 10.1016/j.compstruct.2016.01.037
  203. Malgaca L, Yavuz Ş, Akdağ M, Karagülle H. Residual vibration control of a single-link flexible curved manipulator. Elsevier BV. 2016. doi: 10.1016/j.simpat.2016.06.007 Available from: https://dx.doi.org/10.1016/j.simpat.2016.06.007
  204. Yaqoob Yasin M, Kapuria S. Influence of piezoelectric nonlinearity on active vibration suppression of smart laminated shells using strong field actuation. Journal of Vibration and Control. 2018;24(3):505–526.
  205. He W, Ouyang Y, Hong J. Vibration Control of a Flexible Robotic Manipulator in the Presence of Input Deadzone. IEEE Transactions on Industrial Informatics. 2017;13(1):48–59. doi: 10.1109/tii.2016.2608739
  206. Lu E, Li W, Yang X, Wang Y, Liu Y. Optimal placement and active vibration control for piezoelectric smart flexible manipulators using modal H2 norm. Journal of Intelligent Material Systems and Structures. 2018;29(11):2333–2343. doi: 10.1177/1045389x18770851
  207. Varma NSS, Krishna SSV, Vemuluri DRB. Active Vibration Control of Laminated Composite Plates by using External Patches. International Journal of Engineering Research and Applications. 2017;07(05):57–65. doi: 10.9790/9622-0705015765
  208. Medeiros Pe De M, Bessa W, Savi M, Souza De Paula A. Vibration Control of Smart Structures With a Fuzzy Sliding Mode Control Scheme. 24th ABCM International Congress Mechanical Engineering. .
  209. Chuaqui TR, Roque CM, Ribeiro P. Active vibration control of piezoelectric smart beams with radial basis function generated finite difference collocation method. Journal of Intelligent Material Systems and Structures. 2018;29(13):2728–2743. doi: 10.1177/1045389x18778363
  210. Altammar H, Dhingra A, Salowitz N. Initial study of internally embedded shear-mode piezoelectric transducers for the detection of joint defects in laminate structures. Journal of Intelligent Material Systems and Structures. 2019;30(15):2314–2330. doi: 10.1177/1045389x19862624
  211. Carrison P, Altammar H, Salowitz N. Selective actuation and sensing of antisymmetric ultrasonic waves using shear-deforming piezoelectric transducers. Structural Health Monitoring. 2021;20(3):978–989. doi: 10.1177/1475921720944933
  212. Reddy RS, Panda S, Gupta A. Nonlinear dynamics and active control of smart beams using shear/extensional mode piezoelectric actuators. International Journal of Mechanical Sciences. 2021;204:106495. doi: 10.1016/j.ijmecsci.2021.106495
  213. Gupta A, Panda S, Reddy RS. Shear actuation-based hybrid damping treatment of sandwich structures using a graphite particle-filled viscoelastic layer. Journal of Intelligent Material Systems and Structures. 2021;32(20):2477–2493. doi: 10.1177/1045389x211002649
  214. Zorić ND, Tomović AM, Obradović AM, Radulović RD, Petrović GR. Active vibration control of smart composite plates using optimized self-tuning fuzzy logic controller with optimization of placement, sizing and orientation of PFRC actuators. Journal of Sound and Vibration. 2019;456:173–198. doi: 10.1016/j.jsv.2019.05.035
  215. Sakib S, Estiaquearefin AM, Mursalin R, Naim-Ul-Hasan. Effect of lead zirconate titanate piezoceramic material on the deflection of MEMS based sandwiched cantilever beamfor piezoelectric actuation. 2017 4th IEEE Uttar Pradesh Section International Conference on Electrical, Computer and Electronics (UPCON). 2017;p. 388–91.
  216. Gonçalves JF, De Leon DM, Perondi EA. A simultaneous approach for compliance minimization and piezoelectric actuator design considering the polarization profile. International Journal for Numerical Methods in Engineering. 2020;121(2):334–353. doi: 10.1002/nme.6211
  217. Singh K, Kumar R, Talha M, Narain V. Vibration Control of Smart Cantilever Beam Using Fuzzy Logic Controller. In: Lecture Notes in Mechanical Engineering. (pp. 1801-1812) Springer Singapore. 2022.
  218. Marinangeli L, Alijani F, HosseinNia SH. A Fractional-order Positive Position Feedback Compensator for Active Vibration Control. IFAC-PapersOnLine. 2017;50(1):12809–12816. doi: 10.1016/j.ifacol.2017.08.1929
  219. Kleinwort R, Herb J, Kapfinger P, Sellemond M, Weiss C, Buschka M, et al. Experimental comparison of different automatically tuned control strategies for active vibration control. CIRP Journal of Manufacturing Science and Technology. 2021;35:281–297. doi: 10.1016/j.cirpj.2021.06.019
  220. Yang DH, Shin JH, Lee H, Kim SK, Kwak MK. Active vibration control of structure by Active Mass Damper and Multi-Modal Negative Acceleration Feedback control algorithm. Journal of Sound and Vibration. 2017;392:18–30. doi: 10.1016/j.jsv.2016.12.036
  221. PEUKERT C, PÖHLMANN P, MERX M, IHLENFELDT S, MÜLLER J. INVESTIGATION OF LOCAL AND MODAL BASED ACTIVE VIBRATION CONTROL STRATEGIES ON THE EXAMPLE OF AN ELASTIC SYSTEM. Journal of Machine Engineering. 2019;19(2):32–45. doi: 10.5604/01.3001.0013.2222
  222. Zhao P, Zhou Y. Active vibration control of flexible-joint manipulators using accelerometers. Industrial Robot: the international journal of robotics research and application. 2019;47:33–44. Available from: https://www.emerald.com/insight/content/doi/10.1108/IR-07-2019-0144/full/html
  223. Shin JH, Han S, Kwak MK. Active vibration control of plate by active mass damper and negative acceleration feedback control algorithms. Journal of Low Frequency Noise, Vibration and Active Control. 2021;40(1):413–426.
  224. Wang X, Morandini M, Masarati P. Velocity feedback damping of piezo-actuated wings. Composite Structures. 2017;174:221–232. doi: 10.1016/j.compstruct.2017.04.016
  225. Rahman N, Alam MN, Junaid M. Active vibration control of composite shallow shells: An integrated approach. JOURNAL OF MECHANICAL ENGINEERING AND SCIENCES. 2018;12(1):3354–3369. Available from: https://pdfs.semanticscholar.org/7d05/6f2b8ecd536df0957c2483354ea6439aac99.pdf
  226. Zhang B, Jin K, Kou Y, Zheng X. The model of active vibration control based on giant magnetostrictive materials. Smart Materials and Structures. 2019;28(8):085028. doi: 10.1088/1361-665x/ab2dd0
  227. Garcia-Perez OA, Silva-Navarro G, Peza-Solis JF. Flexible-link robots with combined trajectory tracking and vibration control. Applied Mathematical Modelling. 2019;70:285–298. doi: 10.1016/j.apm.2019.01.035
  228. Luca AD. Trajectory control of flexible manipulators. In: Lecture Notes in Control and Information Sciences. (pp. 83-104) Springer Berlin Heidelberg. 1998.
  229. Lewis FL, Dawson DM, Abdallah TC. 2004.
  230. Spong MW, Vidyasagar M, Seth H. Robot Modelling and Control. 2005.
  231. Spong M, Vidyasagar M. Robust linear compensator design for nonlinear robotic control. IEEE Journal on Robotics and Automation. 1987;3(4):345–351. doi: 10.1109/jra.1987.1087110
  232. Ortega R, Spong MW. Adaptive motion control of rigid robots: A tutorial. Automatica. 1989;25(6):877–888. doi: 10.1016/0005-1098(89)90054-x
  233. Slotine JJE, Yang HS. Improving the efficiency of time-optimal path-following algorithms. IEEE Transactions on Robotics and Automation. 1989;5(1):118–124. doi: 10.1109/70.88024
  234. Shiller Z, Chang H. Trajectory Preshaping for High-Speed Articulated Systems. Journal of Dynamic Systems, Measurement, and Control. 1995;117(3):304–310. doi: 10.1115/1.2799120
  235. Aurelio P, Antonio V. Global minimum-jerk trajectory planning of robot manipulators. IEEE Transactions on Industrial Electronics. 2000;47(1):140–149. Available from: 10.1109/41.824136
  236. Gasparetto A, Zanotto V. A new method for smooth trajectory planning of robot manipulators. Mechanism and Machine Theory. 2007;42(4):455–471. doi: 10.1016/j.mechmachtheory.2006.04.002
  237. Pellicciari M, Berselli G, Balugani F. On Designing Optimal Trajectories for Servo-Actuated Mechanisms: Detailed Virtual Prototyping and Experimental Evaluation. IEEE/ASME Transactions on Mechatronics. 2015;20(5):2039–2052. doi: 10.1109/tmech.2014.2361759
  238. Green A, Sasiadek JZ. Dynamics and Trajectory Tracking Control of a Two-Link Robot Manipulator. Journal of Vibration and Control. 2004;10(10):1415–1440. doi: 10.1177/1077546304042058
  239. Sato O, Sato A, Takahashi N, Yokomichi M. Analysis of the two-link manipulator in consideration of the horizontal motion about object. Artificial Life and Robotics. 2016;21(1):43–48. doi: 10.1007/s10015-015-0251-8
  240. Lismonde A, Sonneville V, Brüls O. A geometric optimization method for the trajectory planning of flexible manipulators. Multibody System Dynamics. 2019;47(4):347–362. doi: 10.1007/s11044-019-09695-z
  241. Giorgio I, Del Vescovo D. Energy-based trajectory tracking and vibration control for multilink highly flexible manipulators. Mathematics and Mechanics of Complex Systems. 2019;7(2):159–174. doi: 10.2140/memocs.2019.7.159
  242. Wang M, Luo J, Yuan J, Walter U. Coordinated trajectory planning of dual-arm space robot using constrained particle swarm optimization. Acta Astronautica. 2018;146:259–272. doi: 10.1016/j.actaastro.2018.03.012
  243. Xin P, Rong J, Yang Y, Xiang D, Xiang Y. Trajectory planning with residual vibration suppression for space manipulator based on particle swarm optimization algorithm. Advances in Mechanical Engineering. 2017;9(4):168781401769269. doi: 10.1177/1687814017692694
  244. Hizarci H, Ikizoglu S. Position Control of Flexible Manipulator using PSO-tuned PID Controller. 2019 Innovations in Intelligent Systems and Applications Conference (ASYU). 2019;p. 1–5. Available from: https://ieeexplore.ieee.org/document/8946440/
  245. Li Y, Ge SS, Wei Q, Gan T, Tao X. An Online Trajectory Planning Method of a Flexible-Link Manipulator Aiming at Vibration Suppression. IEEE Access. 2020;8:130616–130632. doi: 10.1109/access.2020.3009526
  246. Esfandiar H, Korayem H, Haghpanahi M, M. Optimal Trajectory Planning for Flexible Mobile Manipulators under Large Deformation Using Meta-heuristic Optimization Methods. International Journal of Advanced Design and Manufacturing Technology. 2016;9(1):57–72.
  247. Ratiu M, Adriana Prichici M. Industrial robot trajectory optimization- a review. MATEC Web of Conferences. 2017;126:02005. doi: 10.1051/matecconf/201712602005
  248. Shedbale N, Muley PV. Review on Viscoelastic Materials used in Viscoelastic Dampers. International Research Journal of Engineering and Technology. 2017;4(7):1–7. Available from: www.irjet.net
  249. Karagülle H, Malgaca L, Öktem HF. Analysis of active vibration control in smart structures by ANSYS. Smart Materials and Structures. 2004;13(4):661–667. doi: 10.1088/0964-1726/13/4/003
  250. Prado GS, Goncalves BW, Santos H, Dos. UNCERTAINTIES ON ADHESIVE LAYER FOR A CANTILEVER BEAM : PASSIVE CONTROL. 24th ABCM International Congress of Mechanical Engineering. 2017. Available from: http://www.sistema.abcm.org.br/articleFiles/download/12159
  251. Schoeftner J, Benjeddou A. Development of accurate piezoelectric beam models based on Boley’s method. Composite Structures. 2019;223:110970. doi: 10.1016/j.compstruct.2019.110970
  252. Trindade MA. Simultaneous Extension and Shear Piezoelectric Actuation for Active Vibration Control of Sandwich Beams. Journal of Intelligent Material Systems and Structures. 2007;18(6):591–600. Available from: https://doi.org/10.1177/1045389X06076592
  253. Benjeddou A, Trindade MA, Ohayon R. New Shear Actuated Smart Structure Beam Finite Element. AIAA Journal. 1999;37(3):378–383. doi: 10.2514/2.719
  254. Kapuria S, Hagedorn P. Unified efficient layerwise theory for smart beams with segmented extension/shear mode, piezoelectric actuators and sensors. Journal of Mechanics of Materials and Structures. 2007;2(7):1267–1298. doi: 10.2140/jomms.2007.2.1267
  255. Shin K, Mckay N. Automatic generation of trajectory planners for industrial robots. Proceedings 1986 IEEE International Conference on Robotics and Automation. Institute of Electrical and Electronics Engineers. 1986;p. 260–266. Available from: http://ieeexplore.ieee.org/document/1087635/
  256. Valente A, Baraldo S, Carpanzano E. Smooth trajectory generation for industrial robots performing high precision assembly processes. CIRP Annals. 2017;66(1):17–20. doi: 10.1016/j.cirp.2017.04.105
  257. Yao J, Huang Y, Wan Z, Zhang L, Sun C, Zhang X. Minimum-time trajectory planning for an inchworm-like climbing robot based on quantum-behaved particle swarm optimization. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2017;231(18):3443–3454. doi: 10.1177/0954406216646138
  258. Shen P, Zhang X, Fang Y. Essential Properties of Numerical Integration for Time-Optimal Path-Constrained Trajectory Planning. IEEE Robotics and Automation Letters. 2017;2(2):888–895. doi: 10.1109/lra.2017.2655580
  259. Abu-Dakka FJ, Assad IF, Alkhdour RM, Abderahim M. Statistical evaluation of an evolutionary algorithm for minimum time trajectory planning problem for industrial robots. Springer Science and Business Media LLC. 2017. doi: 10.1007/s00170-016-9050-1 Available from: https://dx.doi.org/10.1007/s00170-016-9050-1
  260. Reiter A, Muller A, Gattringer H. On Higher Order Inverse Kinematics Methods in Time-Optimal Trajectory Planning for Kinematically Redundant Manipulators. IEEE Transactions on Industrial Informatics. 2018;14(4):1681–1690. doi: 10.1109/tii.2018.2792002
  261. Shen P, Zhang X, Fang Y. Complete and Time-Optimal Path-Constrained Trajectory Planning With Torque and Velocity Constraints: Theory and Applications. IEEE/ASME Transactions on Mechatronics. 2018;23(2):735–746. doi: 10.1109/tmech.2018.2810828
  262. Zhao K, Li S, Kang Z. Smooth minimum time trajectory planning with minimal feed fluctuation. The International Journal of Advanced Manufacturing Technology. 2019;105(1-4):1099–1111. doi: 10.1007/s00170-019-04308-7
  263. Liu Y, Du Z, Zhang S. Minimum-time Trajectory Planning for Residual Vibration Suppression of Flexible Manipulator Carrying a Payload. IOP Conference Series: Materials Science and Engineering. 2020;853(1):012044. doi: 10.1088/1757-899x/853/1/012044
  264. Wang X, Sun W, Li E, Song X. Energy-minimum optimization of the intelligent excavating process for large cable shovel through trajectory planning. Structural and Multidisciplinary Optimization. 2018;58(5):2219–2237. doi: 10.1007/s00158-018-2011-6
  265. Carabin G, Vidoni R, Wehrle E. Energy Saving in Mechatronic Systems Through Optimal Point-to-Point Trajectory Generation via Standard Primitives. In: Mechanisms and Machine Science. (pp. 20-28) Springer International Publishing. 2019.
  266. Wu G, Zhao W, Zhang X. Optimum time-energy-jerk trajectory planning for serial robotic manipulators by reparameterized quintic NURBS curves. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2021;235(19):4382–4393. doi: 10.1177/0954406220969734
  267. Du H, Du JM, Chen LA, Mai ZW, Liu XH, Cai HZ. Multi-DOF Robotic Manipulator Trajectory Controlling based on Minimum Energy Optimization. Advances in Intelligent Systems Research. 2015;123:345–354.
  268. Ho PM, Uchiyama N, Sano S, Honda Y, Kato A, Yonezawa T. Simple Motion Trajectory Generation for Energy Saving of Industrial Machines. SICE Journal of Control, Measurement, and System Integration. 2014;7(1):29–34. doi: 10.9746/jcmsi.7.29
  269. Ramabalan S, Saravanan R, Krishnaraj R, Ebenezer GR, N. Multi criteria trajectory planning with nurbs curves for cooperative robots. International Journal of Mechanical Engineering and Technology. 2017;8(5):959–73. Available from: https://iaeme.com/MasterAdmin/Journal_uploads/IJMET/VOLUME_8_ISSUE_5/IJMET_08_05_101.pdf
  270. Lu S, Zhao J, Jiang L, Liu H. Solving the Time-Jerk Optimal Trajectory Planning Problem of a Robot Using Augmented Lagrange Constrained Particle Swarm Optimization. Mathematical Problems in Engineering. 2017;2017:1–10. doi: 10.1155/2017/1921479
  271. Rout A, Dileep M, Mohanta GB, Deepak B, Biswal B. Optimal time-jerk trajectory planning of 6 axis welding robot using TLBO method. Procedia Computer Science. 2018;133:537–544. doi: 10.1016/j.procs.2018.07.067
  272. Rojas RA, Garcia MAR, Wehrle E, Vidoni R. A Variational Approach to Minimum-Jerk Trajectories for Psychological Safety in Collaborative Assembly Stations. IEEE Robotics and Automation Letters. 2019;4(2):823–829. doi: 10.1109/lra.2019.2893018
  273. Fang Y, Hu J, Liu W, Shao Q, Qi J, Peng Y. Smooth and time-optimal S-curve trajectory planning for automated robots and machines. Mechanism and Machine Theory. 2019;137:127–153. doi: 10.1016/j.mechmachtheory.2019.03.019
  274. Zhou J, Chen M, Chen J, Jia S. Optimal time-jerk trajectory planning for the landing and walking integration mechanism using adaptive genetic algorithm method. Review of Scientific Instruments. 2020;91(4):044501. doi: 10.1063/1.5133369
  275. Oliveira PW, Barreto GA, Thé GAP. A General Framework for Optimal Tuning of PID-like Controllers for Minimum Jerk Robotic Trajectories. Journal of Intelligent & Robotic Systems. 2020;99(3-4):467–486. doi: 10.1007/s10846-019-01121-y
  276. Devi MA, Prakash CPS, Jadhav PD, Hebbar PS, Mohsin M, Shashank SK. Minimum Jerk Trajectory Planning of PUMA560 with Intelligent Computation using ANN. In: 2021 6th International Conference on Inventive Computation Technologies (ICICT). (pp. 544-50) IEEE. 2021.
  277. Kyriakopoulos KJ, Saridis GN. Minimum jerk path generation. In: Proceedings. 1988 IEEE International Conference on Robotics and Automation. (pp. 364-373) IEEE Comput. Soc. Press. 1988.
  278. Rajan V. Minimum time trajectory planning. In: Proceedings. 1985 IEEE International Conference on Robotics and Automation. (pp. 759-64) Institute of Electrical and Electronics Engineers. 1985.
  279. Pei Y, Liu Z, Xu J, Yang C. Minimum-time trajectory planning for a 4-dof manipulator considering motion stability and obstacle avoidance. 2020 5th International Conference on Mechanical, Control and Computer Engineering (ICMCCE). 2020;p. 207–218. Available from: https://ieeexplore.ieee.org/document/9421588/
  280. Gregory J, Olivares A, Staffetti E. Energy-optimal trajectory planning for robot manipulators with holonomic constraints. Systems & Control Letters. 2012;61(2):279–291. doi: 10.1016/j.sysconle.2011.11.005
  281. Korayem MH, Rahimi HN, Nikoobin A. Mathematical modeling and trajectory planning of mobile manipulators with flexible links and joints. Applied Mathematical Modelling. 2012;36(7):3229–3244. doi: 10.1016/j.apm.2011.10.002
  282. Wigstrom O, Lennartson B, Vergnano A, Breitholtz C. High-Level Scheduling of Energy Optimal Trajectories. IEEE Transactions on Automation Science and Engineering. 2013;10(1):57–64. doi: 10.1109/tase.2012.2198816
  283. Zhang T, Zhang M, Zou Y. Time-optimal and Smooth Trajectory Planning for Robot Manipulators. International Journal of Control, Automation and Systems. 2021;19(1):521–531. doi: 10.1007/s12555-019-0703-3
  284. Faroni M, Beschi M, Visioli A, Pedrocchi N. A real-time trajectory planning method for enhanced path-tracking performance of serial manipulators. Mechanism and Machine Theory. 2021;156:104152. doi: 10.1016/j.mechmachtheory.2020.104152
  285. Huang MS, Hsu YL, Fung RF. Minimum-Energy Point-to-Point Trajectory Planning for a Motor-Toggle Servomechanism. IEEE/ASME Transactions on Mechatronics. 2012;17(2):337–344. doi: 10.1109/tmech.2010.2103366
  286. Kobilarov M. Nonlinear Trajectory Control of Multi-body Aerial Manipulators. Journal of Intelligent & Robotic Systems. 2014;73(1-4):679–692. doi: 10.1007/s10846-013-9934-3
  287. Hussein MT. A review on vision-based control of flexible manipulators. Advanced Robotics. 2015;29(24):1575–1585.
  288. He W, Gao H, Zhou C, Yang C, Li Z. Reinforcement Learning Control of a Flexible Two-Link Manipulator: An Experimental Investigation. IEEE Transactions on Systems, Man, and Cybernetics: Systems. 2021;51(12):7326–7336. doi: 10.1109/tsmc.2020.2975232
  289.  

Copyright

© 2021 Mishra & SIngh. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.