• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 7, Pages: 309-317

Original Article

Effect of Hulled Barley Grains (Hordeum vulgare) Powder on the Gene Level Expression of PPAR-g and SIRT1 in Rats Subjected to Experimental Hyperlipidemia

Received Date:07 December 2021, Accepted Date:28 January 2022, Published Date:25 February 2022


Objectives: To determine the mode of hypolipidemic action of Hulled Barley Grains Powder (HBGP) on the gene level expression of PPAR-g and SIRT1 in High-Fat Diet (HFD) induced hyperlipidemic rats. Methods: The HBGP was subjected to High-Performance Liquid Chromatography (HPLC) to quantify the major phytochemicals. Male Sprague Dawley rats were fed an HFD for 14 weeks to induce hyperlipidemia. The rats in groups 1 and 2 were fed a standard diet. Group 3 and 4 rats were fed HFD for 14 weeks. From the third week onwards, Group 2 and 4 rats received 50% of HBGP mixed in the feed, in addition to 50% of the normal and HFD diets. The rats were euthanized after 14 weeks, and plasma lipids, serum levels of adiponectin and leptin were measured. The mRNA expression of PPAR-g and SIRT1were also measured. Findings: HBGP was found to contain phenolics: Ferulic acid-9.11, benzoic acid-3.58, cinnamic acid-1.191, vanillic acid-2.43, flavonoids: quercetin- 6.53, kaempferol-1.04, and myricetin-1.443 (mg/g). HFD+HBGP fed rats showed a significant decrease in blood lipids and leptin levels. Furthermore, serum adiponectin levels and mRNA expression of PPAR-g and SIRT1 were found to be quantitatively increased in HBGP co-administered rats when compared to HFD fed rats. Novelty: HBGP exhibits hypolipidemic activity by elevating the mRNA expression of PPAR-g and SIRT1. The presence of various phytochemicals such as ferulic acid, quercetin, benzoic acid, vanillic acid, myricetin, cinnamic acid, and kaempferol might be accounted for the hypolipidemic effect of HBGP.

Keywords: Hyperlipidemia; HFD; HBGP; HPLC; Adiponectin; Leptin; PPAR-g ; SIRT1


  1. Zeng Y, Pu X, Du J, Yang X, Li X, Mandal MSN, et al. Molecular Mechanism of Functional Ingredients in Barley to Combat Human Chronic Diseases. Oxidative Medicine and Cellular Longevity. 2020;2020:1–26. Available from: https://dx.doi.org/10.1155/2020/3836172
  2. Kosgei VJ, Coelho D, Guéant-Rodriguez RM, Guéant JL. Sirt1-PPARS Cross-Talk in Complex Metabolic Diseases and Inherited Disorders of the One Carbon Metabolism. Cells. 2020;9(8):1882. Available from: https://dx.doi.org/10.3390/cells9081882
  3. Nascimento AF, Sugizaki MM, Leopoldo AS, Lima-Leopoldo AP, Luvizotto RAM, Nogueira CR, et al. A Hypercaloric pellet-diet cycle induces obesity and co-morbidities in wistar rats. Arquivos Brasileiros de Endocrinologia & Metabologia. 2008;52:968–974. Available from: https://dx.doi.org/10.1590/s0004-27302008000600007
  4. Zak B, Dickenman RC, White EG, Burnett H, Cherney PJ. Rapid Estimation of Free and Total Cholesterol. American Journal of Clinical Pathology. 1954;24(11_ts):1307–1315. Available from: https://dx.doi.org/10.1093/ajcp/24.11_ts.1307
  5. Handel EV, Db Z. Micro method for the direct determination of serum triglyceride. Journal of Laboratory and Clinical Medicine. 1957;50:13439279.
  6. Kuchmak M, Hazlehurst JS, Olansky AS, Taylor L. Reference sera with graded levels of high density lipoprotein cholesterol. Clinica Chimica Acta. 1984;144(2-3):237–243. Available from: https://dx.doi.org/10.1016/0009-8981(84)90058-5
  7. Bairaktari ET, Seferiadis KI, Elisaf MS. Evaluation of Methods for the Measurement of Low-Density Lipoprotein Cholesterol. Journal of Cardiovascular Pharmacology and Therapeutics. 2005;10(1):45–54. Available from: https://dx.doi.org/10.1177/107424840501000106
  8. Deng N, He Z, Guo R, Zheng B, Li T, Liu RH. Highland Barley Whole Grain (Hordeum vulgare L.) Ameliorates Hyperlipidemia by Modulating Cecal Microbiota, miRNAs, and AMPK Pathways in Leptin Receptor-Deficient db/db Mice. Journal of Agricultural and Food Chemistry. 2020;68(42):11735–11746. Available from: https://dx.doi.org/10.1021/acs.jafc.0c04780
  9. Stoica L, Gadea R, Navolan DB, Lazar F, Duta C, Stoian D, et al. Plasma ghrelin, adiponectin and leptin levels in obese rats with type 2 diabetes mellitus after sleeve gastrectomy and gastric plication. Experimental and Therapeutic Medicine. 2021;21(3):264. Available from: https://dx.doi.org/10.3892/etm.2021.9695
  10. Wang O, Liu J, Cheng Q, Guo X, Wang Y, Zhao L, et al. Effects of Ferulic Acid and γ-Oryzanol on High-Fat and High-Fructose Diet-Induced Metabolic Syndrome in Rats. PLOS ONE. 2015;10(2):e0118135. Available from: https://dx.doi.org/10.1371/journal.pone.0118135
  11. Iside C, Scafuro M, Nebbioso A, Altucci L. SIRT1 Activation by Natural Phytochemicals: An Overview. Frontiers in Pharmacology. 2020;11:1225. Available from: https://dx.doi.org/10.3389/fphar.2020.01225
  12. Qiao L, Shao J. SIRT1 Regulates Adiponectin Gene Expression through Foxo1-C/Enhancer-binding Protein α Transcriptional Complex. Journal of Biological Chemistry. 2006;281(52):39915–39924. Available from: https://dx.doi.org/10.1074/jbc.m607215200
  13. Chen X, Guo Y, Jia G, Zhao H, Liu G, Huang Z. Ferulic acid regulates muscle fiber type formation through the Sirt1/AMPK signaling pathway. Food & Function. 2019;10(1):259–265. Available from: https://dx.doi.org/10.1039/c8fo01902a


© 2022 Ramamurthy & Begum.


Subscribe now for latest articles and news.