• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 37, Pages: 3090-3099

Original Article

Effectiveness of Organic Smart Agriculture and Environmental Sustainability in a Post-Pandemic World

Received Date:02 June 2023, Accepted Date:30 August 2023, Published Date:03 October 2023


Objective: The goal of the proposed work is to create a smart farming methodology that automates crop suggestions, smart irrigation, disease management using machine learning, and pest management utilising the Internet of Things concepts. Methods: The proposed approach implements smart farming in four different phases. Crop selection is recommended based on the suitability of the soil using XGBoost machine learning algorithm using Kaggle Crop Recommendation dataset. Smart irrigation has been implemented using LM35 soil temperature sensor and DHT22 humidity sensor. Convolutional neural network models were used for automatic crop disease detection. An IoT-based system is proposed for pest management. Findings: This approach uses hybrid strategies to increase agricultural productivity in the best possible circumstances. Ten agricultural fields that cultivate rice and vegetables like tomatoes, lady fingers, and brinjal plants in Southern parts of Tamil Nadu have been used as case studies for the research. Crop selection based on soil type resulted in an increase in crop yield of 62% for tomato crops, 71% for brinjal and 77% for ladies finger. Smart irrigation helped in reducing the consumption of water by 34.38% for rice, 56.17% for brinjal, 60% for ladies finger and 64.45% for tomatoes. Tomato leaf diseases could be automatically identified with an accuracy of 96.24%. Novelty: XGBoost algorithm has been implemented to choose crops based on soil type for the first time with an accuracy of 98.62%. Smart irrigation is implemented with temperature and humidity sensors and pH meter. Convolutional neural network model has been improved using transfer learning techniques and hyperparameter tuning to achieve an accuracy of 96.24%.

Keywords: Smart Farming; Convolutional Neural Networks; Extreme Gradient Boosting; Deep Learning


  1. Farooq MS, Riaz S, Abid A, Umer T, Zikria YB. Role of IoT Technology in Agriculture: A Systematic Literature Review. Electronics. 2020;9(2):319. Available from: http://dx.doi.org/10.3390/electronics9020319
  2. Dhanya VG, Subeesh A, Kushwaha NL, Vishwakarma DK, Kumar TN, Ritika G, et al. Deep learning based computer vision approaches for smart agricultural applications. Artificial Intelligence in Agriculture. 2022;6:211–229. Available from: https://doi.org/10.1016/j.aiia.2022.09.007
  3. Algarni MD, Alroobaea R, Almotiri J, Ullah SS, Hussain S, Umar F. An Efficient Convolutional Neural Network with Transfer Learning for Malware Classification. Wireless Communications and Mobile Computing. 2022;2022:1–8. Available from: https://doi.org/10.1155/2022/4841741
  4. Gupta A, Nahar P. Classification and yield prediction in smart agriculture system using IoT. Journal of Ambient Intelligence and Humanized Computing. 2023;14(8):10235–10244. Available from: https://doi.org/10.1007/s12652-021-03685-w
  5. Sridhar A, Balakrishnan A, Jacob MM, Sillanpää M, Dayanandan N. Global impact of COVID-19 on agriculture: role of sustainable agriculture and digital farming. Environmental Science and Pollution Research. 2022;30(15):42509–42525. Available from: https://doi.org/10.1007/s11356-022-19358-w
  6. Thinakaran J, Paul S, Latha CBC, Jacob G. Blockchain in Big Data for Agriculture Supply Chain. Studies in Big Data. 2023;p. 257–291. Available from: https://doi.org/10.1007/978-981-19-8730-4_9
  7. Bisoffi S, Ahrné L, Aschemann-Witzel J, Báldi A, Cuhls K, Declerck F, et al. COVID-19 and Sustainable Food Systems: What Should We Learn Before the Next Emergency. Frontiers in Sustainable Food Systems. 2021;5. Available from: https://doi.org/10.3389/fsufs.2021.650987
  8. Rajasree CR, Latha SBC, Paul AM. Tomato Leaf Disease Detection using Deep Learning Algorithm. International Journal of Creative Research Thoughts. 2022;10(9):104–114. Available from: https://www.ijcrt.org/papers/IJCRT2209017.pdf
  9. James A, Saji A, Nair A, Joseph D. CropSense – A Smart Agricultural System using IoT. 2019. Available from: https://doi.org/10.5281/zenodo.3566563
  10. Rajasree R, Latha CBC, Paul S. Application of Transfer Learning with a Fine-tuned ResNet-152 for Evaluation of Disease Severity in Tomato Plants. Mobile Computing and Sustainable Informatics. 2022;p. 695–710. Available from: https://doi.org/10.1007/978-981-19-2069-1_48
  11. Yadhav SY, Senthilkumar T, Jayanthy S, Kovilpillai JJA. Plant Disease Detection and Classification using CNN Model with Optimized Activation Function. 2020 International Conference on Electronics and Sustainable Communication Systems (ICESC). 2020;p. 564–569. Available from: https://doi.org/10.1109/ICESC48915.2020.9155815
  12. Altalak M, Uddin MA, Alajmi A, Rizg A. Smart Agriculture Applications Using Deep Learning Technologies: A Survey. Applied Sciences. 2022;12(12):5919. Available from: https://doi.org/10.3390/app12125919
  13. Debnath O, Saha HN. An IoT-based intelligent farming using CNN for early disease detection in rice paddy. Microprocessors and Microsystems. 2022;94:104631. Available from: https://doi.org/10.1016/j.micpro.2022.104631
  14. Akhter R, Sofi SA. Precision agriculture using IoT data analytics and machine learning. Journal of King Saud University - Computer and Information Sciences. 2022;34(8):5602–5618. Available from: https://doi.org/10.1016/j.jksuci.2021.05.013
  15. Saranya N, Mythili A. Classification of Soil and Crop Suggestion using Machine Learning Techniques. International Journal of Engineering Research and. 2020;9(02). Available from: http://dx.doi.org/10.17577/IJERTV9IS020315
  16. Gaikwad S, Aiwale A, Rekade V, Kalunge V. Soil Classification and Crop Suggestion using Machine Learning Techniques. International Journal for Research in Applied Science and Engineering Technology. 2022;10(5):4984–4986. Available from: . https://doi.org/10.22214/ijraset.2022.43524
  17. Wang Y, Li S, Cui Y, Qin S, Guo H, Yang D, et al. Effect of Drip Irrigation on Soil Water Balance and Water Use Efficiency of Maize in Northwest China. Water. 2021;13(2):217. Available from: https://doi.org/10.3390/w13020217
  18. Sharifnasab H, Mahrokh A, Dehghanisanij H, Łazuka E, Łagód G, Karami H. Evaluating the Use of Intelligent Irrigation Systems Based on the IoT in Grain Corn Irrigation. Water. 2023;15(7):1394. Available from: https://doi.org/10.3390/w15071394
  19. Trivedi NK, Gautam V, Anand A, Aljahdali HM, Villar SG, Anand D, et al. Early Detection and Classification of Tomato Leaf Disease Using High-Performance Deep Neural Network. Sensors. 2021;21(23):7987. Available from: https://doi.org/10.3390/s21237987
  20. Guerrero-Ibañez A, Reyes-Muñoz A. Monitoring Tomato Leaf Disease through Convolutional Neural Networks. Electronics. 2023;12(1):229. Available from: https://doi.org/10.3390/electronics12010229
  21. Agarwal M, Singh A, Arjaria S, Sinha A, Gupta S. ToLeD: Tomato Leaf Disease Detection using Convolution Neural Network. Procedia Computer Science. 2020;167:293–301. Available from: https://doi.org/10.1016/j.procs.2020.03.225
  22. Prajwala T, Pranathi A, Saiashritha K, Chittaragi NB, Koolagudi SG. Tomato Leaf Disease Detection Using Convolutional Neural Networks. In: 2018 Eleventh International Conference on Contemporary Computing (IC3). (pp. 1-5) IEEE. 2018.


© 2023 Beulah et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.