• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 47, Pages: 4631-4645

Original Article

Electricity requirement prediction using time series and Facebook’s PROPHET

Received Date:20 October 2020, Accepted Date:16 December 2020, Published Date:29 December 2020


Objectives: The main objective of this research work is to forecast the electricity requirement of a particular household or an office or any building. Methods: Forecasting is done using the PROPHET model which gives better results compared to other models like ARIMA and so on. Dataset considered here is a publicly available dataset called ‘Appliance’ dataset with what are all the appliances that are there in the particular household and number of appliances that are running on a day at every 10 minutes interval and so on. From the entire dataset, only two attributes are selected, and Log transformation is applied to the selected attributes. Finally, the PROPHET model is applied and the forecasting is done. Findings: The findings of the proposed models are: (i) Forecasting is done for the next 30 days based on different components like daily component, weekly component and trend component (ii) Wednesday is the lowest power utilization day and, power utilization increases till Saturday and Saturday is the highest power utilization day (iii) PROPHET model makes predictions very accurate based on the future data and is easy to make predictions compared to ARIMA. Novelty: Models were trained on the dataset from January 11, 2016, to May 27, 2016 interval which is at 10 min for about 4.5 months. The models anticipated qualities that could be viewed as effective in the 30-day forecast. The accomplishment of the model in the time series expectation was investigated and analyzed.

Keywords: Electricity; forecasting; PROPHET


  1. Yenidoğan I, Çayir A, Kozan O, Dağ T, Arslan C. Bitcoin forecasting using ARIMA and PROPHET. In: 3rd International Conference on Computer Science and Engineering (UBMK). Sarajevo. p. 621–624.
  2. Contreras J, Espinola R, Nogales FJ, Conejo AJ. ARIMA models to predict next-day electricity prices. IEEE Transactions on Power Systems. 2003;18(3):1014–1020. Available from: https://dx.doi.org/10.1109/tpwrs.2002.804943
  3. Pappas SS, Ekonomou L, Karampelas P, Karamousantas DC, Katsikas SK, Chatzarakis GE, et al. Electricity demand load forecasting of the Hellenic power system using an ARMA model. Electric Power Systems Research. 2010;80:256–264. Available from: https://dx.doi.org/10.1016/j.epsr.2009.09.006
  4. Alvarez FM, Troncoso A, Riquelme JC, Ruiz JSA. Energy time series forecasting based on pattern sequence similarity. IEEE Transactions on Knowledge and Data Engineering. 2011;23(8):1230–1243. Available from: https://dx.doi.org/10.1109/tkde.2010.227
  5. Nogales FJ, Contreras J, Conejo AJ, Espinola R. Forecasting Next-Day Electricity Prices by Time Series Models. IEEE Power Engineering Review. 2002;22(3):58. Available from: https://dx.doi.org/10.1109/mper.2002.4312063
  6. Lee YW, Gaik TK, Yee CY. Forecasting electricity consumption using time series model. International Journal of Engineering and Technology. 2018;7:218–223. Available from: https://doi.org/10.14419/ijet.v7i4.30.22124
  7. Lam JC, Wan KKW, Wong SL, Lam TNT. Principal component analysis and long-term building energy simulation correlation. Energy Conversion and Management. 2010;51:135–139. Available from: https://dx.doi.org/10.1016/j.enconman.2009.09.004
  8. Usha TM, Balamurugan SAA. Seasonal Based Electricity Demand Forecasting Using Time Series Analysis. Circuits and Systems. 2016;07(10):3320–3328. Available from: https://dx.doi.org/10.4236/cs.2016.710283
  9. Chujai P, Kerdprasop N, Kerdprasop K. Time series analysis of household electric consumption with ARIMA and ARMA Models. Proceedings of the International MultiConference of Engineers and Computer Scientists. 2013;1:295–300. Available from: http://www.iaeng.org/publication/IMECS2013/IMECS2013_pp295-300.pdf
  10. Sun T, Zhang T, Teng Y, Chen Z, Fang J. Monthly Electricity Consumption Forecasting Method Based on X12 and STL Decomposition Model in an Integrated Energy System. Mathematical Problems in Engineering. 2019;2019:1–16. Available from: https://dx.doi.org/10.1155/2019/9012543
  11. Ahmad A, Anderson TN, Rehman SU. Prediction of electricity consumption for residential houses in New Zealand. Smart Grid and Innovative Frontiers in Telecommunications. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering. 2018;245:165–172. Available from: https://doi.org/10.1007/978-3-319-94965-9_17
  12. Almazrouee AI, Almeshal AM, Almutairi AS, Alenezi MR, Alhajeri SN. Long-Term Forecasting of Electrical Loads in Kuwait Using Prophet and Holt–Winters Models. Applied Sciences. 2020;10(16):5627. Available from: https://dx.doi.org/10.3390/app10165627
  13. Gong F, Han N, Li D, Tian S. Trend analysis of building power consumption based on PROPHET algorithm. Asia Energy and Electrical Engineering Symposium (AEEES). 2020;p. 1002–1006. Available from: https://doi.org/10.1109/AEEES48850.2020.9121548
  14. Wei N, Li C, Peng X, Zeng F, Lu X. Conventional models and artificial intelligence-based models for energy consumption forecasting: A review. Journal of Petroleum Science and Engineering. 2019;181. Available from: https://doi.org/10.1016/j.petrol.2019.106187
  15. Lindberg KB, Seljom P, Madsen H, Fischer D, Korpås M. Long-term electricity load forecasting: Current and future trends. Utilities Policy. 2019;58:102–119. Available from: https://dx.doi.org/10.1016/j.jup.2019.04.001
  16. Kuster C, Rezgui Y, Mourshed M. Electrical load forecasting models: A critical systematic review. Sustainable Cities and Society. 2017;35:257–270. Available from: https://dx.doi.org/10.1016/j.scs.2017.08.009
  17. Scheidt FV, Medinová H, Ludwig N, Richter B, Staudt P, Weinhardt C. Data analytics in the electricity sector - A quantitative and qualitative literature review. Energy and AI. 2020. Available from: http://dx.doi.org/10.1016/j.egyai.2020.100009
  18. Amasyali K, El-Gohary NM. A review of data-driven building energy consumption prediction studies. Renewable and Sustainable Energy Reviews. 2018;81:1192–1205. Available from: https://dx.doi.org/10.1016/j.rser.2017.04.095
  19. Khuntia SR, Rueda JL, Meijden MAMMvd. Forecasting the load of electrical power systems in mid- and long-term horizons: a review. IET Generation, Transmission & Distribution. 2016;10(16):3971–3977. Available from: https://dx.doi.org/10.1049/iet-gtd.2016.0340
  20. Taylor SJ, Letham B. Forecasting at Scale. The American Statistician. 2018;72:37–45. Available from: https://dx.doi.org/10.1080/00031305.2017.1380080


© 2020 Chadalavada et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.