• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 46, Pages: 4555-4563

Review Article

Enhancement of the tribological performance of pure titanium (CP-Ti) through YAG laser technique

Received Date:13 October 2020, Accepted Date:13 December 2020, Published Date:19 December 2020

Abstract

Background/Objectives: The poor wear resistance of pure titanium has significantly limited its industrial and biomedical applications, especially when it is used in severe conditions. To overcome this limitation, surface treatment must be done to improve the wear resistance without negatively affect its excellent corrosion resistance. Methods: To prepare titanium for use under severe wear and friction conditions, its surfaces were laser melted using YAG Fiber laser at powers of 1000, 1500 and 2000 W, and travelling speeds of 4 and 30 mm/s. The processes were conducted in argon atmosphere. Findings: In all cases, three zones were observed: melted zone, heat-affected zone and base metal. The increase of the power and/or decrease of the travelling speed caused increases in the depths of the melted zones. Acicular martensite a’ structure was observed within the melted and solidified zone. A hardened surface layer of 445 HV with improvement of 62%, with reference to CP-Ti base metal, was produced by application of the treatment at power of 1000 W and travelling speed of 4 mm/s. When the travelling speed with increased to 30mm/s, the surface hardness reached 710 HV. The depth of hardened layer was increased from nearly 0.6 mm to 0.8 mm by increasing processing power from 1000 W to 2000 W at travelling speed of 4 mm/s. Remarkable improvements in wear and corrosion resistances of the treated specimens were achieved.The weight losses of the un-treated substrate were almost 5 times (2.4 gm) of the laser treated sample at 1500 W and 30 mm/s (0.5 gm). For corrosion, the corrosion potentials were shifted to more positive values and the corrosion current was shifted to more negative values for the laser treated sample at 1000W compared to the un-treated sample. Applications: the findings will widen the application of pure titanium in many biomedical and industrial fields.

Keywords: Commercially pure titanium; surface microhardness; wear resistance; corrosion resistance; laser surface melting

References

  1. Mello MGd, Salvador CAF, Fanton L, Caram R. High strength biomedical Ti–13Mo–6Sn alloy: Processing routes, microstructural evolution and mechanical behavior. Materials Science and Engineering: A. 2019;764. Available from: https://dx.doi.org/10.1016/j.msea.2019.138190
  2. Zimmermann S, Specht U, Spieß L, Romanus H, Krischok S, Himmerlich M, et al. Improved adhesion at titanium surfaces via laser-induced surface oxidation and roughening. Materials Science and Engineering: A. 2012;558:755–760. Available from: https://dx.doi.org/10.1016/j.msea.2012.08.101
  3. Quazi MM, Ishak M, Fazal MA, Arslan A, Rubaiee S, Qaban A, et al. Current research and development status of dissimilar materials laser welding of titanium and its alloys. Optics & Laser Technology. 2020;126. Available from: https://dx.doi.org/10.1016/j.optlastec.2020.106090
  4. Koizumi H, Takeuchi Y, Imai H, Kawai T, Yoneyama T. Application of titanium and titanium alloys to fixed dental prostheses. Journal of Prosthodontic Research. 2019;63(3):266–270. Available from: https://dx.doi.org/10.1016/j.jpor.2019.04.011
  5. Xuanyong L, Chu PK, Chuanxian D. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Materials Science and Engineering: R. 2014;47:49–121. Available from: https://doi.org/10.1016/j.mser.2004.11.001
  6. Li JPSH, Blitterswijk CAV. Cancellous Bone from Porous TI6Al4V by Multiple Coating Technique. Journal of Materials Science: Materials in Medicine. 2016;17:179–185.
  7. Mitsuo N. Mechanical biocompatibilities of titanium alloys for biomedical applications. Journal of the Mechanical Behavior of Biomedical Materials. 2018;1:30–42. Available from: https://doi.org/10.1016/j.jmbbm.2007.07.001
  8. Sallica-Leva E, Jardini AL, Fogagnolo JB. Microstructure and mechanical behavior of porous Ti–6Al–4V parts obtained by selective laser melting. Journal of the Mechanical Behavior of Biomedical Materials. 2013;26:98–108. Available from: https://dx.doi.org/10.1016/j.jmbbm.2013.05.011
  9. Semboshi S, Iwase A, Takasugi T. Surface hardening of age-hardenable Cu–Ti alloy by plasma carburization. Surface and Coatings Technology. 2015;283:262–267. Available from: https://dx.doi.org/10.1016/j.surfcoat.2015.11.003
  10. Sireli GK, Bora AS, Timur S. Evaluating the mechanical behavior of electrochemically borided low-carbon steel. Surface and Coatings Technology. 2020;381. Available from: https://dx.doi.org/10.1016/j.surfcoat.2019.125177
  11. Hoshiyama Y, Miyazaki T, Miyake H. Zirconium carbide dispersed high Cr–Ni cast iron produced by plasma spraying. Surface and Coatings Technology. 2013;228:S7–S10. Available from: https://dx.doi.org/10.1016/j.surfcoat.2012.10.019
  12. Li W, Cao C, Yin S. Solid-state cold spraying of Ti and its alloys: A literature review. Progress in Materials Science. 2020;110:100633. Available from: https://dx.doi.org/10.1016/j.pmatsci.2019.100633
  13. Suhaimi MA, Yang GD, Park KH, Hisam MJ, Sharif S, Kim DW. Effect of Cryogenic Machining for Titanium Alloy Based on Indirect, Internal and External Spray System. Procedia Manufacturing. 2018;17:158–165. Available from: https://dx.doi.org/10.1016/j.promfg.2018.10.031
  14. Yadroitsev I, Krakhmalev P, Yadroitsava I. Selective laser melting of Ti6Al4V alloy for biomedical applications: Temperature monitoring and microstructural evolution. Journal of Alloys and Compounds. 2014;583:404–409. Available from: https://dx.doi.org/10.1016/j.jallcom.2013.08.183
  15. Kanyane LR, Adesina OS, Popoola API, Farotade GA, Malatji N. Microstructural evolution and corrosion properties of laser clad Ti-Ni on titanium alloy (Ti6Al4V) 2019.
  16. Mohseni E, Zalnezhad E, Bushroa AR. Comparative investigation on the adhesion of hydroxyapatite coating on Ti–6Al–4V implant: A review paper. International Journal of Adhesion and Adhesives. 2014;48:238–257. Available from: https://dx.doi.org/10.1016/j.ijadhadh.2013.09.030
  17. Lin Y, Yao J, Lei Y, Fu H, Wang L. Microstructure and properties of TiB 2 –TiB reinforced titanium matrix composite coating by laser cladding. Optics and Lasers in Engineering. 2016;86:216–227. Available from: https://dx.doi.org/10.1016/j.optlaseng.2016.06.013
  18. Huang S, Agyenim-Boateng E, Sheng J, Yuan G, Dai FZ, Ma DH, et al. Effects of laser peening with different laser power densities on the mechanical properties of hydrogenated TC4 titanium alloy. International Journal of Hydrogen Energy. 2019;44(31):17114–17126. Available from: https://dx.doi.org/10.1016/j.ijhydene.2019.05.002
  19. Plooy Rd, Akinlabi ET. Analysis of laser cladding of Titanium alloy. Materials Today: Proceedings. 2018;5(9):19594–19603. Available from: https://dx.doi.org/10.1016/j.matpr.2018.06.322
  20. Pascu A, Rosca JM, Stanciu EM. Laser cladding: from experimental research to industrial applications. Materials Today: Proceedings. 2019;19:1059–1065. Available from: https://dx.doi.org/10.1016/j.matpr.2019.08.021
  21. Kusiński J, Ciaś A, Pieczonka TM, Smith AB, Rakowska A. Wear properties of T15 PM HSS made indexable inserts after laser surface melting. Journal of Materials Processing Technology. 1997;64(1-3):239–246. Available from: https://dx.doi.org/10.1016/s0924-0136(96)02573-3
  22. El-Labban HF, Mahmoud ERI, Algahtani A. Microstructure, Wear, and Corrosion Characteristics of TiC-Laser Surface Cladding on Low-Carbon Steel. Metallurgical and Materials Transactions B. 2016;47(2):974–982. Available from: https://dx.doi.org/10.1007/s11663-016-0602-4
  23. Xu WF, Jun MA, Wang M, Lu HJ. Yu-xuan Luo Effect of cooling conditions on corrosion resistance of friction stir welded 2219-T62 aluminum alloy thick plate joint. Transactions of Nonferrous Metals Society of China. 2020;30(6):1491–1499. Available from: https://doi.org/10.1016/S1003-6326(20)65313-4

Copyright

© 2020 Mahmoud.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.