• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 31, Pages: 3150-3159

Original Article

Facile and fast preparation of Nano-rod ZnO for photocatalytic application under low intensity of UV light irradiation

Received Date:10 June 2020, Accepted Date:07 August 2020, Published Date:27 August 2020

Abstract

Objective: This study aims to degrade the organic dyes in aqueous medium and low UV intensity by nano-rod ZnO. Methodology: The ZnO was prepared by a facile and fast method, as-synthesized ZnO was characterized by SEM,XRD, N2 adsorption/desorption isotherm, and diffuse reflectance UV-vis. The composition of samples before and after calcination steps was analyzed by XRD. The catalytic performance of ZnO was evaluated by the degradation of dyes in aqueous solution under a low UV light irradiation. Finding: the precursor was completely transformed to ZnO at 400 ◦C. The ZnO was nanorod structure with the crystalline phase of hexagonal wurtzite. The degradation efficiency of ZnO for Janus Green B in 10 min was 96.8%, it was 95.8% in 40 min for Congo Red. The reaction kinetic of photodegradation of dyes was followed by the first-order kinetic model and the photodegradation mechanism of ZnO for dyes was proposed. Application/Improvement: The facile and fast method was developed for the synthesis of nano-rod ZnO, it could be applied for practical application in wastewater treatment.

Keywords: ZnO; dyes; photocatalyst; first-order kinetic; Nano-rod

References

  1. Moussavi G, Mahmoudi M. Removal of azo and anthraquinone reactive dyes from industrial wastewaters using MgO nanoparticles. Journal of Hazardous Materials. 2009;168(2-3):806–812. Available from: https://dx.doi.org/10.1016/j.jhazmat.2009.02.097
  2. Shidpour R, Vosoughi M, Simchi A, Ghanbari F. Effect of Morphology-based Defect Structure of ZnO Nanostructures in Photo-Degradation of Organic Dye. MRS Proceedings. 2014;1672. Available from: https://dx.doi.org/10.1557/opl.2014.727
  3. Portillo-Vélez NS, Hernández-Gordillo A, Bizarro M. Morphological effect of ZnO nanoflakes and nanobars on the photocatalytic dye degradation. Catalysis Today. 2017;287:106–112. Available from: https://dx.doi.org/10.1016/j.cattod.2016.10.023
  4. Mai LT, Hoai LT, Tuan VA. Effects of reaction parameters on photodegradation of caffeine over hierarchical flower-like ZnO nanostructure. Vietnam Journal of Chemistry. 2018;56(5):647–653. Available from: https://dx.doi.org/10.1002/vjch.201800064
  5. Kiwaan AH, Atwee MT, Azab AE, El-Bindary AA. Efficient photocatalytic degradation of Acid Red 57 using synthesized ZnO nanowires. Journal of the Chinese Chemical Society. 2019;66(1):89–98. Available from: https://dx.doi.org/10.1002/jccs.201800092
  6. Achouri F, Merlin C, Corbel S, Alem H, Mathieu L, Balan L, et al. ZnO Nanorods with High Photocatalytic and Antibacterial Activity under Solar Light Irradiation. Materials. 2018;11(11). Available from: https://dx.doi.org/10.3390/ma11112158
  7. Zhang D, Wang Y, Chen L, Xiao C, Feng J, Liao L, et al. Facile Preparation and Enhanced Visible-Light Photocatalysis of ZnO [email protected] Nanosheets Heterostructures. Journal of Nanomaterials. 2019;2019:1–7. Available from: https://dx.doi.org/10.1155/2019/4508687
  8. Lei A, Qu B, Zhou W, Wang Y, Zhang Q, Zou B. Facile synthesis and enhanced photocatalytic activity of hierarchical porous ZnO microspheres. Materials Letters. 2012;66:72–75. Available from: https://doi.org/10.1016/j.matlet.2011.08.011
  9. Miao Y, Zhang H, Yuan S, Jiao Z, Zhu X. Preparation of flower-like ZnO architectures assembled with nanosheets for enhanced photocatalytic activity. Journal of Colloid and Interface Science. 2016;462:9–18. Available from: https://dx.doi.org/10.1016/j.jcis.2015.09.064
  10. Ahmad M, Ahmed E, Hong ZL, Ahmed W, Elhissi A, Khalid NR. Photocatalytic, sonocatalytic and sonophotocatalytic degradation of Rhodamine B using ZnO/CNTs composites photocatalysts. Ultrasonics Sonochemistry. 2014;21(2):761–773. Available from: https://dx.doi.org/10.1016/j.ultsonch.2013.08.014
  11. Zhou H, Zhang H, Wang Y, Miao Y, Gu L, Jiao Z. Self-assembly and template-free synthesis of ZnO hierarchical nanostructures and their photocatalytic properties. Journal of Colloid and Interface Science. 2015;448:367–373. Available from: https://doi.org/10.1016/j.jcis.2015.02.040
  12. Li B, Wang Y. Facile Synthesis and Enhanced Photocatalytic Performance of Flower-like ZnO Hierarchical Microstructures. The Journal of Physical Chemistry C. 2010;114:890–896. Available from: https://doi.org/10.1021/jp909478q
  13. Kaur A, Gupta G, Ibhadon OA, Salunke BD, Sinha ASK, Kansal SK. A Facile synthesis of silver modified ZnO nanoplates for efficient removal of ofloxacin drug in aqueous phase under solar irradiation. Journal of Environmental Chemical Engineering. 2018;6(3):3621–3630. Available from: https://dx.doi.org/10.1016/j.jece.2017.05.032
  14. Lei A, Qu B, Zhou W, Wang Y, Zhang Q, Zou B. Facile synthesis and enhanced photocatalytic activity of hierarchical porous ZnO microspheres. Materials Letters. 2012;66:72–75. Available from: https://dx.doi.org/10.1016/j.matlet.2011.08.011
  15. Ramasamy P, Kim J. Facile and fast synthesis of flower-like ZnO nanostructures. Materials Letters. 2013;93:52–55. Available from: https://dx.doi.org/10.1016/j.matlet.2012.11.042
  16. Ameen S, Akhtar MS, Shin HS. Speedy photocatalytic degradation of bromophenol dye over ZnO nanoflowers. Materials Letters. 2017;209:150–154. Available from: https://dx.doi.org/10.1016/j.matlet.2017.07.117
  17. Jagannatha R, Ramu SR, Padaki M, Balakrishna RG. An efficient method for the synthesis of photo catalytically active ZnO nanoparticles by a gel-combustion method for the photo-degradation of Caffeine. Nanochemistry Research. 2017;2:86–95.
  18. Saikia L, Bhuyan D, Saikia M, Malakar B, Dutta DK, Sengupta P. Photocatalytic performance of ZnO nanomaterials for self sensitized degradation of malachite green dye under solar light. Applied Catalysis A: General. 2015;490:42–49. Available from: https://dx.doi.org/10.1016/j.apcata.2014.10.053
  19. Krishnakumar B, Swaminathan M. Photodegradation of Acid Violet 7 with AgBr–ZnO under highly alkaline conditions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2012;99:160–165. Available from: https://dx.doi.org/10.1016/j.saa.2012.08.077
  20. Selvam K, Muruganandham M, Muthuvel I, Swaminathan M. The influence of inorganic oxidants and metal ions on semiconductor sensitized photodegradation of 4-fluorophenol. Chemical Engineering Journal. 2007;128(1):51–57. Available from: https://dx.doi.org/10.1016/j.cej.2006.07.016

Copyright

© 2020 Hung & Tuan.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).

 

DON'T MISS OUT!

Subscribe now for latest articles and news.