• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 48, Pages: 4672-4678

Original Article

GC-SAW and GC-FID performance comparison for fast analysis of volatile organic compounds

Received Date:07 September 2020, Accepted Date:14 December 2020, Published Date:30 December 2020

Abstract

Objectives: To develop gas chromatograph (GC) based chemical agent detector and to compare the response of Surface Acoustic Wave (SAW) detector with Flame Ionization Detector (FID) for the development of a reliable and fast gas/vapour analyzer. Also, to describe the limitations of the FID over SAW detector. Methods: An uncoated 433.92 MHz SAW device was used as Gas Chromatography (GC) detector and its response was recorded and compared with conventional FID detector using short capillary column. The response of both the detectors were analyzed by using standard mixture of seven Volatile Organic Compounds (VOCs). Besides this comparison various key parameter of GC i.e. Flow, temperature and length of GC column were also optimized for fast GC analysis. Findings: After analyzing the fast GC data of both the detectors with same sample, it was observed that the resolution of chromatograms with SAW detector showed more resolved peaks as compare to the FID detector for the same GC parameters. Improvements/Applications: It is concluded that the SAW detector is more suitable for fast and reliable analysis of chemical vapors in rapid analysis.

Keywords: Gas chromatograph detector; surface acoustic wave; volatile organic compounds

References

  1. King WH. Piezoelectric Sorption Detector. Analytical Chemistry. 1964;36(9):1735–1739. Available from: https://dx.doi.org/10.1021/ac60215a012
  2. Wohltjen H, Dessy R. Surface acoustic wave probes for chemical analysis. II. Gas chromatography detector. Analytical Chemistry. 1979;51(9):1465–1470. Available from: https://dx.doi.org/10.1021/ac50045a025
  3. Zhou M, Lee J, Zhu H, Nidetz R, Kurabayashi K, Fan X. A fully automated portable gas chromatography system for sensitive and rapid quantification of volatile organic compounds in water. RSC Advances. 2016;6(55):49416–49424. Available from: https://dx.doi.org/10.1039/c6ra09131h
  4. Barbosa-Cornelio R, Cantor F, Coy-Barrera E, Rodríguez D. Tools in the investigation of volatile semiochemicals on insects: From sampling to statistical analysis. Insects. 2019;10(8):241. Available from: https://dx.doi.org/10.3390/insects10080241
  5. Bartelt-Hunt SL, Knappe DRU, Barlaz MA. A Review of Chemical Warfare Agent Simulants for the Study of Environmental Behavior. Critical Reviews in Environmental Science and Technology. 2008;38(2):112–136. Available from: https://dx.doi.org/10.1080/10643380701643650
  6. Faricha A, Suwito S, Rivai M, Nanda MA, Purwanto D, RPRA. Design of electronic nose system using gas chromatography principle and surface acoustic wave sensor. TELKOMNIKA (Telecommunication Computing Electronics and Control). 2018;16(4):1457. Available from: https://dx.doi.org/10.12928/telkomnika.v16i4.7127
  7. Watson G, Horton W, Staples E. Gas chromatography utilizing SAW sensors. 1991.
  8. Slobodnik AJ. Surface acoustic waves and SAW materials. In: Proceedings of the IEEE. (Vol. 64, pp. 581-595) Institute of Electrical and Electronics Engineers (IEEE). 1976.
  9. Mittal U, Islam T, Nimal AT, Sharma MU. Fabrication of high frequency surface acoustic wave (SAW) devices for real time detection of highly toxic chemical vapors. International Journal on Smart Sensing and Intelligent Systems. 2015;8(3):1601–1623. Available from: https://dx.doi.org/10.21307/ijssis-2017-821
  10. Fahim M, Mittal U, Kumar J, Nimal AT, Sharma MU. Single chip readout electronics for SAW based gas sensor systems. Proc. IEEE Sensors. 2017;p. 1–3. Available from: https://doi.org/10.1109/ICSENS.2017.8233886
  11. Liu J, Lu Y. Response mechanism for surface acoustic wave gas sensors based on surface-adsorption. Sensors (Switzerland). 2014;14:6844–6853. Available from: https://doi.org/10.3390/s140406844
  12. Dewulf J, Langenhove HV, Wittmann G. Analysis of volatile organic compounds using gas chromatography. TrAC Trends in Analytical Chemistry. 2002;21(9-10):637–646. Available from: https://dx.doi.org/10.1016/s0165-9936(02)00804-x
  13. Giddings JC. Optimum conditions for separation in gas chromatography. Analytical Chemistry. 1960;32(12):1707–1711. Available from: https://dx.doi.org/10.1021/ac60168a050

Copyright

© 2020 Kumar et al.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.