• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 32, Pages: 3349-3363

Original Article

Implications of carbonates and chlorides contamination in groundwater: Examples from textile tie and dye markets in some parts of Southwestern Nigeria

Received Date:07 May 2020, Accepted Date:19 June 2020, Published Date:02 September 2020


Objectives: To evaluate the impact of common mineral dyes in effluents from dyeing processes on the quality of groundwater at Itoku and Asero, Abeokuta in Nigeria. Methods: Thirty-two (32) samples were examined by determining the In-situ parameters: Total Dissolved Solids (TDS), Electrical Conductivity (Ec) and pH with the aid of a multi-parameter portable meter(model Testr-35); Chemical parameters were determined with Atomic Absorption Spectrometry (AAS)and Titration methods for both cations and anions. Collected samples were analyzed for heterotrophic bacteria load using standard method. Findings: Elevated Ec-1830 µS/cm and TDS-1020mg/l values at Odutola-8 exceeded the WHO permissible limit with bicarbonate, carbonate and chlorides presence, in the water sample. DO at Ifote-6.0, Asero-6.8, Ifote-7.1, Asero carwash-7.9 was greater than WHO standard, specifying water that can support aquatic life and micro-organisms. However, other areas had low dissolved oxygen below the specified permissible limit. The results of the physicochemical parameters including; Chloride and Carbonate levels in effluent and groundwater in most of the studied sites were higher than the World Health Organization (WHO) permissible limits. Dye effluents and well water samples displayed high microbial loads. Predominant bacteria isolated from the effluent and groundwater included Aspergillus spp. Pseudomonas aeruginosa and Bacillus subtilis. Polycyclic aromatic hydrocarbon (PAHs) observed indicated probable human carcinogens found where dye fabrication processes were high and effective. Novelty: Dye effluents have high bacterial and fungal loads. Similarity in the predominant bacteria isolated from effluent and groundwater from the hand-dug wells indicated that the effluent from the dyeing processes is negatively impacting the groundwater and this may pose a risk to public health. High levels of Carbonates, bicarbonates and chlorides in groundwater indicate contamination; making the water unfit for human and animal consumption.

Keywords: Minerals; dyes; contamination; groundwater; carbonates; chlorides


  1. Adu-Akwaboa S. Art for Schools and Colleges: Classification of Dyes (2). Kumasi, Ghana. Samarg Publication. 1994.
  2. Minero C, Pellizzari P, Maurino V, Pelizzetti E, Vione D. Enhancement of dyes on chemical degradation by some inorganic anions present in natural waters. Applied Catalysis B: Environmental. 2008;77(3-4):308–316. Available from: https://dx.doi.org/10.1016/j.apcatb.2007.08.001
  3. Gettens RJ, Fitzhugh EW. Malachite and Green Verditer in Artists Pigments. In: Roy A., ed. A Handbook of Their History and Characteristics. (Vol. 2, pp. 183-202) Oxford University Press. 1993.
  4. Rachel S, Popelka-Filcoff EJ, Miksa J, MDDR, HWG. Elemental analysis and characterization of ochre sources from Southern Arizona. Journal of Archaeological Science. 2008;35(3):752–762. Available from: https://dx.doi.org/10.1016/j.jas.2007.05.018
  5. Hiscock P. Archaeology of Ancient Australia. (Vol. 125) Routledge. 2007.
  6. Martín-Gil J, Martín-Gil FJ, Delibes-de-Castro G, Zapatero-Magdaleno P, Herrero FJS. The first known use of vermillion. Experientia. 1995;51(8):759–761. Available from: https://dx.doi.org/10.1007/bf01922425
  7. Santosh P, Revathi D. Hydrogeochemical Analysis of Ground Water Parameters Coimbatore District Tamilnadu, India. Research Journal of Chemical and Environmental Sciences. 2014;12(3):1071–1080.
  8. Adeyeye EI, Abulude FO. Analytical Assessment to some surface and groundwater resources in Ile-Ife, Nigeria. Journal of Chemical Society of Nigeria. 2004;29:98–103.
  9. Central Pollution Control Board. Available from: http://cpcb.nic.in/sop-for-hw-specific/ Available from: NetLibrary (accessed )
  10. Aneyo IA, Doherty FV, Adebesin OA, Hammed MO. Biodegradation of Pollutants in Waste Water from Pharmaceutical, Textile and Local Dye Effluent in Lagos, Nigeria. Journal of Health and Pollution. 2016;6(12):34–42. Available from: https://dx.doi.org/10.5696/2156-9614-6.12.34
  11. Bhatia D, Sharma NR, Kanwar R, Singh J. Physicochemical assessment of industrial textile effluents of Punjab (India). . Applied Water Science. 2018;8(3). Available from: https:/doi.org/10.1007/s13201-018-0728-4
  12. Jones HA, Hockey RD. The geology of part of South-Western Nigeria. Geological Survey Nigeria Bulletin. 1964;31.
  13. Barrow GH, Feltham R. Cowan and Steel’s Manual for identification of Medical bacteria (3). London. Cambridge University Press. 1993.
  14. Environmental Geology. Available from: NetLibrary. Available from: https://www.academia.edu/14439692/environmental_geology (accessed )
  15. Bayoumi MN, Al-Wasify RS, Shimaa RH. Bioremediation of textile waste-water dyes using local bacteria isolates. International Journal Current Microbiology Applied Science. 2014;3(12):962–970.
  16. Prabha S, Gogoi A, Mazumder P, Ramanathan A, Kumar M. Assessment of the impact of textile effluents on microbial diversity in Tirupur district, Tamil Nadu. Applied Water Science. 2017;7(5):2267–2277. Available from: https://dx.doi.org/10.1007/s13201-016-0394-3
  17. Mohamed AH, AE. Health and Environmental Impacts of Dyes: Mini Review. American Journal of Environmental Science and Engineering. 2017;1(3):64–67. Available from: https://doi.org/10.11648/j.ajese.20170103.11
  18. Srivastava S, Sinha R, Roy D. Toxicological effects of malachite green. Aquatic Toxicology. 2004;66(3):319–329. Available from: https://dx.doi.org/10.1016/j.aquatox.2003.09.008
  19. Petersen G. Mining and Metallurgy in Ancient Peru (PDF). Special Paper 467. (pp. 29) Boulder, CO. The Geological Society of America. 2010.
  20. Hayes AW. Principles and Methods of Toxicology. (pp. 978-979) 2014.
  21. Miyata N, Tani Y, Sakata M, Iwahori K. Microbial manganese oxide formation and interaction with toxic metal ions. Journal of Bioscience and Bioengineering. 2007;104(1):1–8. Available from: https://dx.doi.org/10.1263/jbb.104.1
  22. Al-Kdasi A, Idris A, Saed K, Guan C. Treatment of textile wastewater by advanced oxidation processes: A review. Global Nest. International Journal. 2004;6(3):222–230.
  23. Al-Ghouti MA, Khraisheh MAM, Allen SJ, Ahmad MN. The removal of dyes from textile wastewater: a study of the physical characteristics and adsorption mechanisms of diatomaceous earth. Journal of Environmental Management. 2003;69(3):229–238. Available from: https://dx.doi.org/10.1016/j.jenvman.2003.09.005
  24. Khraisheh MAM, Al-Ghouti MA, Allen SJ, Ahmad MNM. The Effect of pH, Temperature, and Molecular Size on the Removal of Dyes from Textile Effluent Using Manganese Oxides-Modified Diatomite. Water Environment Research. 2004;76:2655–2663. Available from: https://dx.doi.org/10.1002/j.1554-7531.2004.tb00227.x
  25. Lucht KP, Mendoza-Cortes JL. Birnessite: A Layered Manganese Oxide To Capture Sunlight for Water-Splitting Catalysis. The Journal of Physical Chemistry C. 2015;119(40):22838–22846. Available from: https://dx.doi.org/10.1021/acs.jpcc.5b07860
  26. Durotoye TO, Adeyemi AA, Omole DO, Onakunle O. Impact assessment of wastewater discharge from a textile industry in Lagos, Nigeria. Cogent Engineering. 2018;5(1):1–11. Available from: https://dx.doi.org/10.1080/23311916.2018.1531687


 © 2020 Ajibade et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.