• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 17, Pages: 1398-1405

Original Article

Investigation for the Ciprofloxacin Resistance Genes Gyr A and Par C in E. Coli Isolates from Urinary Tract Infected Patients

Received Date:28 January 2021, Accepted Date:01 May 2021, Published Date:15 May 2021


Background and Objective: Gyr A and Par C genes, are known to cause resistance especially in Alterations in proteins of fluoroquinolones. Here, we investigated human pathogens Escherichia coli causing Urinary Tract Infection [UTI] to explore the possible link between the abundance of mutations, and the exposure to fluoroquinolones. In this study, we investigated the occurrence of Gyr A and Par C gene producers among Quinolones resistant [QR]  Escherichia Coli isolated Methods: 148 Urine samples were collected from a patients with UT infections. Phenotypically, Ciprofloxacin resistance was screened by micro broth dilution method. Multiplex PCR was carried out to determine the mutations in Gyr A and Par C genes. We have determined partial sequences of the Gyr A and Par C genes of E. coli including the regions analogous to the quinolone resistance-determining region of the E. coli Gyr A gene. Results: Out of 148 urine samples, 100 E. coli were isolated and identified. We analysed 20 quinolone-resistant strains for alterations in Gyr A and Par C. Of these, 11 Gyr A-positive isolates were identified using the Gyr A specific primers and were clearly Ciprofloxacin resistant. The other 9 Ciprofloxacin-resistant isolates were found to have Par C genes using specific primers. We observed an unexpectedly high prevalence of Gyr A than Par C in patients attending a tertiary care hospital by PCR with an estimation of 9.0% (95% confidence interval). This study demonstrated that the number of mutations in QRs of Gyr A and/or Par C was significantly associated with the MICs of quinolones (P<0.01). Conclusion: The Gyr A and Par C genes were detected predominantly in E. coli. The data emerging out of this study helps in understanding the dynamics of this infection and provide inputs for antibiotic policy in the treatment of urinary tract infections.

Keywords: Ciprofloxacin, resistance, Escherichia coli, Polymerase chain reaction, microdilution method


  1. Liu YY, Wang Y, Walsh TR, Yi LX, Zhang R. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infectious Disease. 2015;16(2):161–168. Available from: 10.1016/S1473-3099(15)00424-7
  2. Bernasconi OJ, Kuenzli E, Pires J, Tinguely R, Carattoli A, Hatz C. Travelers can import Ciprofloxacin-resistant enterobacteriaceae, including those possessing the plasmid-mediated Gyr A gene. Antimicroial Agents Chemotherapy. 2016;60:5080–5084.
  3. Brauer A, Telling K, Laht M, Kalmus P, Lutsar I, Remm M. Plasmid with Ciprofloxacin resistance gene Gyr A in ESBL-producing Escherichia coli strains isolated from pig slurry in Estonia. Antimicrobial Agents Chemotherapy. 2016;60:6933–6936. Available from: https://doi.org/10.3390/microorganisms8081253
  4. Dafopoulou K, Zarkotou O, Dimitroulia E, Hadjichristodoulou C, Gennimata V, Pournaras S, et al. Comparative Evaluation of Colistin Susceptibility Testing Methods among Carbapenem-Nonsusceptible Klebsiella pneumoniae and Acinetobacter baumannii Clinical Isolates. Antimicrobial Agents and Chemotherapy. 2015;59(8):4625–4630. Available from: https://dx.doi.org/10.1128/aac.00868-15
  5. Doumith M, Godbole G, Ashton P, Larkin L, Dallman T, Day M. Detection of the plasmid-mediated Gyr Agene conferring Ciprofloxacin resistance in human and food isolates of Salmonella enterica and Escherichia coli in England and Wales. Journal of Antimicrobial agents and Chemotherapy. 2016;71:2300–2305. Available from: 10.3389/fmicb.2018.00592
  6. Garch FE, Sauget M, Hocquet D, LeChaudee D, Woehrle F, Bertrand X. mcr-1 is borne by highly diverse Escherichia coli isolates since 2004 in food-producing animals in Europe. Clinical Microbiology and Infection. 2017;23(1):51.e1–51.e4. Available from: https://dx.doi.org/10.1016/j.cmi.2016.08.033
  7. Ewers C, Göttig S, Bülte M, Fiedler S, Tietgen M, Leidner U. Genome sequence of avian Escherichia coli strain IHIT25637, an extraintestinal pathogenic E. coli strain of ST131 encoding Ciprofloxacin resistance determinant GYR A. Genome Announc. 2016;4:34–38.
  8. Falgenhauer L, Waezsada S, Gwozdzinski K, Ghosh H, Doijad S, Bunk B, et al. Chromosomal Locations of mcr-1 and bla CTX-M-15 in Fluoroquinolone-Resistant Escherichia coli ST410. Emerging infectious diseases. 2016;22(9):1689–1691. Available from: https://doi.org/10.3201/eid2209.160692
  9. Hu YY, Cai JC, Zhou HW, Chi D, Zhang XF, Chen WL, et al. Molecular typing of CTX-M-producing escherichia coli isolates from environmental water, swine feces, specimens from healthy humans, and human patients. Applied and Environmental Microbiology. 2013;79(19):5988–5996. Available from: 10.1128/AEM.01740-13
  10. Li A, Yang Y, Miao M, Chavda KD, Mediavilla JR, Xie X, et al. complete sequences of Gyr A-harboring plasmids from extendedspectrum- beta-lactamase- and carbapenemase-producing Enterobacteriaceae. Antimicrob. Agents Chemother. 2016;60(7):4351–4354. Available from: 10.1128/AAC.00550-16
  11. Prim N, Rivera A, Rodríguez-Navarro J, Español M, Turbau M, Coll P, et al. Detection of mcr-1 colistin resistance gene in polyclonal. Escherichia coli isolates in. 2012;21(13). Available from: 10.2807/1560-7917.ES.2016.21.13.30183
  12. Ponnusamy P, Natarajan V, Sevanan M. In vitro biofilm formation by uropathogenic Escherichia coli and their antimicrobial susceptibility pattern. Asian Pacific Journal of Tropical Medicine. 2012;5(3):210–213. Available from: https://dx.doi.org/10.1016/s1995-7645(12)60026-1
  13. Hamed SM, Elkhatib WF, El-Mahallawy HA, Helmy MM, Ashour MS, Aboshanab KMA. Multiple mechanisms contributing to ciprofloxacin resistance among Gram negative bacteria causing infections to cancer patients. Scientific Reports. 2018;8(1). Available from: https://dx.doi.org/10.1038/s41598-018-30756-4
  14. Kareem SM, Al-kadmy IM, Kazaal SS, Ali ANM, Aziz SN, Makharita RR, et al. Detection of gyrA and parC Mutations and Prevalence of Plasmid-Mediated Quinolone Resistance Genes in Klebsiella pneumoniae. Infection and Drug Resistance. 2021;14:555–563. Available from: https://dx.doi.org/10.2147/idr.s275852


© 2021 Jagathy & Malathi. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.