• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 43, Pages: 2282-2289

Original Article

Lack of Low-affinity Phosphate Transporter Pho91 Alters Lipid Metabolism in Yeast Saccharomyces cerevisiae

Received Date:15 June 2022, Accepted Date:04 October 2022, Published Date:16 November 2022

Abstract

Objective: The current study tries to elucidate the impact of low-affinity Pi transporter Pho91 (using pho91Δ cells) on lipid metabolism and cellular organelles morphology (mitochondria and vacuole) in yeast Saccharomyces cerevisiae. Methods: The lipid profile was performed using thin layer chromatography (TLC), and the membrane defect was determined using DiOC6 staining, lipid droplets (LDs) were observed by Nile red staining, mitochondrial morphology was observed using aconitase 1 GFP, vacuolar morphology was studied by FM4-64 staining and were performed with the aid of laser scanning fluorescent microscope. Findings: Pho91 is a low-affinity phosphate (Pi) transporter in the vacuoles that functions under Pi-rich conditions, but its role in lipid metabolism is largely unknown. In this study, we used defined synthetic complete media (SC). The deletion of Pho91 depicted a moderate growth defect but increased the major phospholipids PC, PE, and PI. Alterations in the membrane phospholipids resulted in defective membrane morphology. In pho91 mutant (pho91Δ), the neutral lipids TAG and SE were increased and stored as LDs. The LD numbers were increased in pho91Δ cells than in WT cells. Altered phospholipids also defective mitochondrial morphology and enlarged vacuoles in pho91 deletion. Novelty: In the absence of low-affinity Pi transporter pho91, it increases phospholipid, neutral lipid levels, LD numbers, and impacted mitochondria along with vacuolar structures.

Keywords: Phosphate transporter; Low affinity; Phospholipids; Neutral lipids; Lipid droplets

References

  1. Subitha M, James AW, Sivaprakasam C, Nachiappan V. Disruption in phosphate transport affects membrane lipid and lipid droplet homeostasis in Saccharomyces cerevisiae. Journal of Bioenergetics and Biomembranes. 2020;52(4):215–227. Available from: https://doi.org/10.1007/s10863-020-09837-5
  2. Tomashevsky A, Kulakovskaya E, Trilisenko L, Kulakovskiy IV, Kulakovskaya T, Fedorov A, et al. VTC4 Polyphosphate Polymerase Knockout Increases Stress Resistance of Saccharomyces cerevisiae Cells. Biology. 2021;10(6):487. Available from: https://doi.org/10.3390/biology10060487
  3. Csáky Z, Garaiová M, Kodedová M, Valachovič M, Sychrová H, Hapala I. Squalene lipotoxicity in a lipid droplet‐less yeast mutant is linked to plasma membrane dysfunction. Yeast. 2020;37(1):45–62. Available from: https://doi.org/10.1002/yea.3454
  4. Kwiatek JM, Han GSS, Carman GM. Phosphatidate-mediated regulation of lipid synthesis at the nuclear/endoplasmic reticulum membrane. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2020;1865(1):158434. Available from: https://doi.org/10.1016/j.bbalip.2019.03.006
  5. Robichaud S, Fairman G, Vijithakumar V, Mak E, Cook DP, Pelletier AR, et al. Identification of novel lipid droplet factors that regulate lipophagy and cholesterol efflux in macrophage foam cells. Autophagy. 2021;17(11):3671–3689. Available from: https://doi.org/10.1080/15548627.2021.1886839
  6. Sawada N, Ueno S, Takeda K. Regulation of inorganic polyphosphate is required for proper vacuolar proteolysis in fission yeast. Journal of Biological Chemistry. 2021;297(1):100891. Available from: https://doi.org/10.1016/j.jbc.2021.100891
  7. EGB, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–918. Available from: https://doi.org/10.1139/o59-099
  8. James AW, Gowsalya R, Nachiappan V. Dolichyl pyrophosphate phosphatase-mediated N -glycosylation defect dysregulates lipid homeostasis in Saccharomyces cerevisiae. Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids. 2016;1861(11):1705–1718. Available from: https://doi.org 10.1016/j.bbalip.2016.08.004
  9. James AW, Ravi C, Srinivasan M, Nachiappan V. Crosstalk between protein N-glycosylation and lipid metabolism in Saccharomyces cerevisiae. Sci Rep. 2019;9(1):14485. Available from: https://doi.org 10.1038/s41598-019-51054-7
  10. Vida TA, Emr SD. A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. Journal of Cell Biology. 1995;128(5):779–792. Available from: https://doi.org/10.1083/jcb.128.5.779
  11. Rockenfeller P, Gourlay CW. Lipotoxicty in yeast: a focus on plasma membrane signalling and membrane contact sites. FEMS Yeast Research. 2018;18(4):1–8. Available from: https://doi.org/10.1093/femsyr/foy034
  12. Malina C, Larsson C, Nielsen J. Yeast mitochondria: an overview of mitochondrial biology and the potential of mitochondrial systems biology. FEMS Yeast Research. 2018;18(5):1–17. Available from: https://doi.org/10.1093/femsyr/foy040
  13. Wang Y, Xu E, Musich PR, Lin F. Mitochondrial dysfunction in neurodegenerative diseases and the potential countermeasure. CNS Neuroscience & Therapeutics. 2019;25(7):816–824. Available from: https://doi.org/10.1111/cns.13116

Copyright

© 2022 Mani & Nachiappan. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.