• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 9, Pages: 811-818

Original Article

Material Performance Evaluation of Cinder Based Light Weight Concrete with Micro-reinforcement

Received Date:11 January 2024, Accepted Date:24 January 2024, Published Date:22 February 2024


Objectives: The present work examines the viability of using industrial solid waste, like cinder, to create lightweight aggregate concrete. Utilizing cinder aggregate as a substitute material for coarse aggregate in producing concrete not only helps in the conservation of natural resource but also provides a feasible solution for solid waste management. Method: The mechanical characteristics of cinder based lightweight concrete were improved by the inclusion of polypropylene fibre as micro-reinforcement, in volume proportions of 0.1%, 0.2%, 0.3%, and 0.4%. The laboratory tests that were conducted on the polypropylene fibre reinforced cinder based lightweight concrete included compressive strength test on cube specimen and cylinder specimen, flexural strength test on prism specimen and modulus of elasticity test on cylinder specimen. Findings: The findings show that cinder aggregate can be satisfactorily utilized as an alternate material to coarse aggregate in the production of lightweight concrete. It has been found that 0.3% of polypropylene fibre was the ideal dosage of micro-reinforcement that can be incorporated in lightweight concrete. Novelty: Further, a multiple linear regression (MLR) model was suggested to evaluate the performance parameters of the fibre-reinforced lightweight concrete, providing an alternative to the time and material consuming experimental works. Scatter plots and Statistical indicators such as R2, RMSE and MAPE indicated that the model demonstrated a strong correlation between the predicted values and the experimental results.

Keywords: Cinder aggregate, Lightweight concrete, Mechanical characteristics, Micro reinforcement, Regression model


  1. Kumar V, Priya AK, Manikandan G, Naveen AS, Nitishkumar B, Pradeep P. Review of materials used in light weight concrete. Materials Today: Proceedings. 2021;37(Part 2):3538–3539. Available from: https://doi.org/10.1016/j.matpr.2020.09.425
  2. Abed MA, Anagreh A, Tošić N, Alkhabbaz O, Alshwaiki ME, Černý R. Structural Performance of Lightweight Aggregate Concrete Reinforced by Glass or Basalt Fiber Reinforced Polymer Bars. Polymers. 2022;14(11):1–16. Available from: https://doi.org/10.3390/polym14112142
  3. Bakhshi M, Soheili H, Dalalbashi A. Optimization of a structural lightweight fiber-reinforced concrete for best performance under impact loading. Cement and Concrete Composites. 2023;136:104875. Available from: https://doi.org/10.1016/j.cemconcomp.2022.104875
  4. Karthika RB, Vidyapriya V, Sri KVN, Beaula KMG, Harini R, Sriram M. Experimental study on lightweight concrete using pumice aggregate. Materials Today: Proceedings. 2021;43(Part 2):1606–1613. Available from: https://doi.org/10.1016/j.matpr.2020.09.762
  5. Atyia MM, Mahdy MG, Elrahman MA. Production and properties of lightweight concrete incorporating recycled waste crushed clay bricks. Construction and Building Materials. 2021;304:124655. Available from: https://doi.org/10.1016/j.conbuildmat.2021.124655
  6. Hasan M, Saidi T, Afifuddin M. Mechanical properties and absorption of lightweight concrete using lightweight aggregate from diatomaceous earth. Construction and Building Materials. 2021;277:122324. Available from: https://doi.org/10.1016/j.conbuildmat.2021.122324
  7. Suseno H, Wijaya MN, Firdausy AI. Correlation between Destructive and Non-Destructive Characteristics of Pumice and Scoria Lightweight Concretes. Engineering journal. 2021;25(8):113–126. Available from: https://doi.org/10.4186/ej.2021.25.8.113
  8. Saradar A, Nemati P, Paskiabi AS, Moein MM, Moez H, Vishki EH. Prediction of mechanical properties of lightweight basalt fiber reinforced concrete containing silica fume and fly ash: Experimental and numerical assessment. Journal of Building Engineering. 2020;32:101732. Available from: https://doi.org/10.1016/j.jobe.2020.101732
  9. Imran H, Al-Abdaly NM, Shamsa MH, Shatnawi A, Ibrahim M, Ostrowski KA. Development of Prediction Model to Predict the Compressive Strength of Eco-Friendly Concrete Using Multivariate Polynomial Regression Combined with Stepwise Method. Materials. 2022;15(1):1–15. Available from: https://doi.org/10.3390/ma15010317
  10. Basaran B, Kalkan I, Aksoylu C, Özkılıç YO, Sabri MMS. Effects of Waste Powder, Fine and Coarse Marble Aggregates on Concrete Compressive Strength. Sustainability. 2022;14(21):1–22. Available from: https://doi.org/10.3390/su142114388
  11. Zhang L, He D, Xu W, Zhao Q, Teng S. Compressive strength prediction model of lightweight high-strength concrete. Magazine of Civil Engineering. 2022;115(7):1–13. Available from: https://doi.org/10.34910/MCE.115.12
  12. Mo KH, Goh SH, Alengaram UJ, Visintin P, Jumaat MZ. Mechanical, toughness, bond and durability-related properties of lightweight concrete reinforced with steel fibres. Materials and Structures. 2017;50(1):1–14. Available from: https://doi.org/10.1617/s11527-016-0934-1
  13. Hama SM. Improving mechanical properties of lightweight Porcelanite aggregate concrete using different waste material. International Journal of Sustainable Built Environment. 2017;6(1):81–90. Available from: https://doi.org/10.1016/j.ijsbe.2017.03.002
  14. Das CS, Dey T, Dandapat R, Mukharjee BB, Kumar J. Performance evaluation of polypropylene fibre reinforced recycled aggregate concrete. Construction and Building Materials. 2018;189:649–659. Available from: https://doi.org/10.1016/j.conbuildmat.2018.09.036
  15. Mousavinejad SHG, YGSS. Experimental study effect of silica fume and hybrid fiber on mechanical properties lightweight concrete. Iranian Journal of Science and Technology, Transactions of Civil Engineering. 2019;43:263–271. Available from: https://doi.org/10.1007/s40996-018-0137-9
  16. Altun MG, Oltulu M. Improving the impact resistance of recycled aggregate concretes with different types of fibers. Challenge Journal of Structural Mechanics. 2019;5(1):19–28. Available from: https://doi.org/10.20528/cjsmec.2019.01.003
  17. Zareei SA, Ameri F, Bahrami N, Shoaei P, Musaeei HR, Nurian F. Green high strength concrete containing recycled waste ceramic aggregates and waste carpet fibers: Mechanical, durability, and microstructural properties. Journal of Building Engineering. 2019;26:100914. Available from: https://doi.org/10.1016/j.jobe.2019.100914
  18. Ghosn S, Cherkawi N, Hamad B. Studies on Hemp and Recycled Aggregate Concrete. International Journal of Concrete Structures and Materials. 2020;14(1):1–17. Available from: https://doi.org/10.1186/s40069-020-00429-6
  19. Wu F, Yu Q, Liu C, Brouwers HJH, Wang L, Liu D. Effect of fibre type and content on performance of bio-based concrete containing heat-treated apricot shell. Materials and Structures. 2020;53(6):1–16. Available from: https://doi.org/10.1617/s11527-020-01570-0
  20. Loh LT, Yew MK, Yew MC, Beh JH, Lee FW, Lim SK, et al. Mechanical and Thermal Properties of Synthetic Polypropylene Fiber–Reinforced Renewable Oil Palm Shell Lightweight Concrete. Materials. 2021;14(9):1–16. Available from: https://doi.org/10.3390/ma14092337
  21. Shoaib S, El-Maaddawy T, El-Hassan H, El-Ariss B, Alsalami M. Characteristics of Basalt Macro-Fiber Reinforced Recycled Aggregate Concrete. Sustainability. 2022;14(21):1–23. Available from: https://doi.org/10.3390/su142114267


© 2024 Sadhana et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.