• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 37, Pages: 3100-3109

Original Article

M/M(a,b)/1 Model Of Interdependent Queueing With Controllable Arrival Rates

Received Date:24 May 2023, Accepted Date:30 August 2023, Published Date:03 October 2023


Objectives: Instead of only providing individualized one-on-one assistance, some studies in the literature on queueing theory describe systems that provide services in batches. This study introduces controllable arrival rates and interdependency in such a system’s service and arrival processes and then obtains the queueing system’s probabilities and characteristics. It also verified the obtained results numerically. Methods: Controlling the arrival rates by faster and slower arrival rates are expected for the input, with Poisson (each time Poisson occurrence has one arrival) being the default assumption. The general bulk service rule dictates that the service be delivered in batches. Service begins only when the count of customers in the queue approaches or surpasses a and the capacity b (a  1). For brevity, a batch’s service time distribution is assumed to be exponential and is not dependent on the batch size. Then, all the steady-state probabilities are derived using a recursive approach. Findings: We used M/M(a,b)/1 as the notation. For this model, steady-state solutions & characteristics are derived and explored. All the probabilities are expressed in terms of P0;0(0). The expected count of customers and waiting time depends on the interdependency, service rate, faster arrival rate, and slower arrival rate. According to each parameter, all the results are verified. Novelty: There are works related to bulk service in queuing theory, but this is a new approach to give a bridge between bulk service and controllable arrival rates along with interdependency in the arrival and service process.

Keywords: M/M(a; b)/1 Queueing System; Bulk Service; Controllable Arrival Rates; Steady States; Interdependent Model; Stochastic Processes


  1. Norman T, Bailey J. On Queueing Processes with Bulk Service. Journal of the Royal Statistical Society. Series B (Methodological). 1954;16(1):80–87. Available from: https://doi.org/10.1111/j.2517-6161.1954.tb00149.x
  2. Gupta GK, Banerjee A. On Finite Buffer Bulk Arrival Bulk Service Queue with Queue Length and Batch Size Dependent Service. International Journal of Applied and Computational Mathematics. 2019;5(2):32. Available from: https://doi.org/10.1007/s40819-019-0617-z
  3. Panda G, Goswami V. Effect of information on the strategic behavior of customers in a discrete-time bulk service queue. Journal of Industrial & Management Optimization. 2020;16(3):1369–1388. Available from: https://doi.org/10.3934/jimo.2019007
  4. Ayyappan G, Nirmala M. Analysis of customer's impatience on bulk service queueing system with unreliable server, setup time and two types of multiple vacations. International Journal of Industrial and Systems Engineering. 2021;38(2):198. Available from: https://doi.org/10.1504/IJISE.2021.115321
  5. Gupta GK, Banerjee A, Gupta UC. On finite-buffer batch-size-dependent bulk service queue with queue-length dependent vacation. Quality Technology & Quantitative Management. 2020;17(5):501–527. Available from: https://doi.org/10.1080/16843703.2019.1675568
  6. Tamrakar GK, Banerjee A. Study on Infinite Buffer Batch Size Dependent Bulk Service Queue with Queue Length Dependent Vacation. International Journal of Applied and Computational Mathematics. 2021;7(6):252. Available from: https://doi.org/10.1007/s40819-021-01194-0
  7. Ayyappan G, Karpagam S. Analysis of a bulk service queue with unreliable server, multiple vacation, overloading and stand-by server. International Journal of Mathematics in Operational Research. 2020;16(3):291. Available from: https://doi.org/10.1504/IJMOR.2020.106927
  8. Medhi J. Stochastic models in queueing theory. Academic Press. 2002.
  9. Neuts MF. A General Class of Bulk Queues with Poisson Input. The Annals of Mathematical Statistics. 1967;38(3):759–770. Available from: https://www.jstor.org/stable/2238992
  10. Thiagarajan M, Srinivasan A. The M/M/1/K Interdependent queueing model with controllable arrival rate. Journal of Decision and Mathematical Sciences. 2006;11(1-3):7–24. Available from: https://www.jstor.org/stable/23885149
  11. Shortle JF, Thompson JM, Gross D. Carl M Harris Fundamentals of queueing theory. In: Fundamentals of queueing theory. John Wiley. 1974.
  12. D’arienzo MP, Dudin AN, Dudin SA, Manzo R. Analysis of a retrial queue with group service of impatient customers. Journal of Ambient Intelligence and Humanized Computing. 2020;11(6):2591–2599. Available from: https://doi.org/10.1007/s12652-019-01318-x
  13. Shavej A, Siddiqui. Optimization of Multiple Server Interdependent Queueing Models with Bulk Service. International Journal of Creative Research Thoughts (IJCRT). 2020. Available from: https://ijcrt.org/papers/IJCRT2004061.pdf
  14. Parimala RS. A Heterogeneous Bulk Service Queueing Model With Vacation. Journal of Mathematical Sciences and Applications. 2020;8(1):1–5. Available from: http://pubs.sciepub.com/jmsa/8/1/1
  15. Krishnamoorthy A, Joshua AN, Vishnevsky V. Analysis of a k-Stage Bulk Service Queuing System with. Accessible Batches for Service. Mathematics. 2021;9(5):559. Available from: https://doi.org/10.3390/math9050559
  16. Shanthi S, Subramanian MG, Sekar G. Computational approach for transient behaviour of M /M (a, b) /1 bulk service queueing system with standby server. International Conference On Advances In Materials, Computing And Communication Technologies. 2022;2385:130030. Available from: https://doi.org/10.1063/5.0070736
  17. Chen A, Wu X, Zhang J. Markovian bulk-arrival and bulk-service queues with general state-dependent control. Queueing Systems. 2020;95(3-4):331–378. Available from: https://doi.org/10.1007/s11134-020-09660-0


© 2023 Rahim & Thiagarajan. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.