• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 1, Pages: 33-45

Original Article

Narrowband aperture coupled waveguide to microstrip transition for space applications

Received Date:15 October 2020, Accepted Date:12 December 2020, Published Date:11 January 2021

Abstract

Background/Objectives: To design, analyze and fabricate aperture coupled waveguide to microstrip transition for Ka-Band where energy is coupled through slot in ground plane and a metal patch placed over the substrate. Methods: Impedance matching approach has been adopted for transition design. Microstrip line is inserted into the waveguide through aperture acting as a probe. Followed by inductive line and transformer line for impedance translation between waveguide and microstrip line. Waveguide transition has been designed using Ansoft High Frequency Structure Simulator (HFSS) full-wave EM simulator. Findings: Designed transition shows return loss performance better than 15 dB and insertion loss better than 0.5 dB for back to back configuration over a frequency band of 34 – 36 GHz. Transition is fabricated on RT5580 Duroid substrate (2r= 2:2) with substrate thickness 0.254 mm. Measured results show return loss better than 25 dB and insertion loss less than 1 dB over a frequency band of 34-36 GHz. Table 2 shows comparison of present design with previously reported designs in terms of performance. Novelty/Applications: Comparison of the presented transition shows superior performance to previously reported transition designs in terms of transition bandwidth and insertion loss. Aperture coupled transitions can be widely used for space applications where hermetic sealing is required and it saves extra effort for sealing. Certain RF circuit applications require narrowband waveguide transitions to attain required performance, in this case aperture coupled transition can be a good option and its integration with RF circuits is also easy. Fabricated transition design results show good agreement with simulated results so it can be concluded that design is tolerant to fabrication errors. Transition has been fabricated using standard PCB process so production of such transition can be done easily without requirement of any special facility for fabrication.

 Keywords: Aperture coupled transition; waveguide; microstrip; kaBand;hermetically sealed

References

  1. Appleby R, Coward PR, Sinclair GN. Terahertz detection of illegal objects. In: Terahertz frequency detection and identification of materials and objects. (pp. 225-240) Springer. 2007.
  2. Coward PR, Appleby R. Development of an illumination chamber for indoor millimeter-wave imaging. In: Passive Millimeter-wave Imaging Technology VI and Radar Sensor Technology VII. (pp. 54-61) International Society for Optics and Photonics. 2003.
  3. Graauw TD, Helmich FP, Phillips TG, Stutzki J, Caux E, Whyborn ND, et al. The Herschel-heterodyne instrument for the far-infrared (HIFI) Astronomy & Astrophysics. 2010;518. Available from: http://doi.org/10.1051/0004-6361/201014698
  4. Grabherr W, Huder WGB, Menzel W. Microstrip to waveguide transition compatible with MM-wave integrated circuits. IEEE Transactions on Microwave Theory and Techniques. 1994;42(9):1842–1843. Available from: https://dx.doi.org/10.1109/22.310597
  5. Shireen R, Shi S, Yao P, Schuetz CA, Macario J, Prather DW. CPW to rectangular waveguide transition on an ${\hbox{LiNbO}}_{3}$ substrate. IEEE Transactions on Microwave Theory and Techniques. 2009;57(6):1494–1499. Available from: https://dx.doi.org/10.1109/tmtt.2009.2020673
  6. Hyvonen L, Hujanen A. A compact MMIC-compatible microstrip to waveguide transition. IEEE MTT-S International Microwave Symposium Digest. 1996. Available from: https://doi.org/10.1109/mwsym.1996.511077
  7. Simon W, Werthen M, Wolff I. A novel coplanar transmission line to rectangular waveguide transition. IEEE MTT-S International Microwave Symposium Digest. 1998. Available from: https://doi.org/10.1109/mwsym.1998.689369
  8. Iizuka H, Watanabe T, Sato K, Nishikawa K. Millimeter-wave microstrip line to waveguide transition fabricated on a single layer dielectric substrate. IEICE transactions on communications. 2002;85(6):1169–1177.
  9. Iizuka H, Sakakibara K, Kikuma N. Millimeter-Wave transition from waveguide to two microstrip lines using rectangular patch element. IEEE Transactions on Microwave Theory and Techniques. 2007;55(5):899–905. Available from: https://dx.doi.org/10.1109/tmtt.2007.895139
  10. Zhang T, Li L, Zhu Z, Cui TJ. A Broadband Planar Balun Using Aperture-Coupled Microstrip-to-SIW Transition. IEEE Microwave and Wireless Components Letters. 2019;p. 1–3. Available from: https://doi.org/10.1109/lmwc.2019.2922499
  11. Yakovlev AB, Ortiz S, Ozkar M, Mortazawi A, Steer MB. A waveguide-based aperture-coupled patch amplifier array-full-wave system analysis and experimental validation. IEEE Transactions on Microwave Theory and Techniques. 2000;48(12):2692–2699. Available from: https://dx.doi.org/10.1109/22.899032
  12. Pérez-Escudero JM, Torres-García AE, Gonzalo R, Ederra I. A gap waveguide-based compact rectangular waveguide to a packaged microstrip inline transition. Applied Sciences. 2020;10(14). Available from: https://dx.doi.org/10.3390/app10144979
  13. Vidhi R, Patel A. Novel Design of waveguide to Microstrip Transition at Millimeter -Wave Frequencies. International Journal of Advanced Science and Technology. 2020;29(04):6645–6665.
  14. Zhang T, Li L, Zhu Z, Cui TJ. A Broadband Planar Balun Using Aperture-Coupled Microstrip-to-SIW Transition. IEEE Microwave and Wireless Components Letters. 2019;p. 1–3. Available from: https://doi.org/10.1109/lmwc.2019.2922499
  15. Mohamed I, Sebak AR. Broadband transition of substrate-integrated waveguide-to-air-filled rectangular waveguide. IEEE Microwave and Wireless Components Letters. 2018;28(11):966–968. Available from: https://dx.doi.org/10.1109/lmwc.2018.2871330
  16. Aliakbarian H, Enayati A, Vandenbosch GAE, Raedt WD. Novel low-cost end-wall microstrip-to-waveguide splitter transition. Progress In Electromagnetics Research. 2010;101:75–96. Available from: https://dx.doi.org/10.2528/pier09081805
  17. Deslandes D, Wu K. Integrated microstrip and rectangular waveguide in planar form. IEEE Microwave and Wireless Components Letters. 2001;11(2):68–70. Available from: https://dx.doi.org/10.1109/7260.914305
  18. Lee HY, Jun DS, Moon SE, Kim EK, Park JH, Park KH. Wideband aperture coupled stacked patch type microstrip to waveguide transition for V-band. Asia-Pacific Microwave Conference. 2006. Available from: https://doi.org/10.1109/apmc.2006.4429440
  19. Kim YJ, Kwak JH, Song H, Jiang X, Kim JP. Broadband aperture-coupled microstrip line to waveguide transition with loading a vertically mounted strip. Microwave and Optical Technology Letters. 2017;59(4):811–815. Available from: https://doi.org/10.1002/mop.30403
  20. Li CL, Jin C, Ma HQ, Shi XW. An inline waveguide-to-microstrip transition for wideband millimeter-wave applications. Microwave and Optical Technology Letters. 2019. Available from: https://doi.org/10.1002/mop.32199

Copyright

© 2021 Raval & Patel.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.