• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 30, Pages: 2333-2340

Original Article

Performance Evaluation of Modified Distributed Energy Efficient based Clustering Aggregation algorithm in Wireless Sensor Networks

Received Date:22 February 2023, Accepted Date:07 July 2023, Published Date:09 August 2023


Objective: To reduce energy consumption and robust algorithm for Wireless Sensor Networks (WSNs). To achieve energy-efficiency, the proposed algorithm incorporates data aggregation models. Data aggregation involves combining and summarizing data from multiple sensor nodes before transmitting it to the Base Station (BS) which helps reduce the overall energy consumption of the network. Methods: A modified version of the Distributed Energy Efficient Clustering Algorithm (MDEECA) is proposed The MDEECA algorithm introduces several parameters which include scaling factor, selection of Cluster Head (CH), threshold probability, and information related to the neighborhood for the next CH selection. Findings: The proposed model is evaluated in terms of packet transmissions. In the first 1000 iterations, 9564 packets are sent to the BS, and this number increases to 29394 packets after 4000 iterations. In the case of packets sent to the CHs, 14456 packets are sent in the first 1000 iterations, and this increases to 112464 packets after 4000 iterations. These results demonstrate the effectiveness of the proposed MDEECA algorithm in terms of data transmission efficiency. Novelty: The modified MDEECA algorithm’s novelty lies in its approach, CH selection based on the residual energy of nodes and the average energy of the network. This modification enhances robustness of the algorithm and improves energy performance, leading to an extended network lifetime. The modified MDEECA algorithm also increases the network lifetime and enhances energy performance in comparison to existing models.

Keywords: Network Protocols; Wireless Network; Sensor node


  1. William P, Badholia A, Verma V, Sharma A, Verma A. Analysis of Data Aggregation and Clustering Protocol in Wireless Sensor Networks Using Machine Learning. Evolutionary Computing and Mobile Sustainable Networks. 2022;116:925–939. Available from: https://doi.org/10.1007/978-981-16-9605-3_65
  2. Oussama G, Rami A, Tarek F, Alanazi AS, Abid M. Fast and Intelligent Irrigation System Based on WSN. Computational Intelligence and Neuroscience. 2022;2022:1–13. Available from: https://doi.org/10.1155/2022/5086290
  3. Wang J, Cao Y, Li B, Kim HJB, Lee SJ. Particle swarm optimization based clustering algorithm with mobile sink for WSNs. Future Generation Computer Systems. 2017;76:452–457. Available from: https://doi.org/10.1016/j.future.2016.08.004
  4. Singh R, Verma AK. Energy efficient cross layer based adaptive threshold routing protocol for WSN. AEU - International Journal of Electronics and Communications. 2017;72:166–173. Available from: https://doi.org/10.1016/j.aeue.2016.12.001
  5. Gilbert EPK, Kaliaperumal B, Rajsingh EB, Lydia M. Trust based data prediction, aggregation and reconstruction using compressed sensing for clustered wireless sensor networks. Computers & Electrical Engineering. 2018;72:894–909. Available from: https://doi.org/10.1016/j.compeleceng.2018.01.013
  6. Zhang J, Tang J, WT, Chen F. Energy-efficient data-gathering rendezvous algorithms with mobile sinks for wireless sensor networks. International Journal of Sensor Networks. 2017;23(4):248–257. Available from: https://doi.org/10.1504/IJSNET.2017.083533
  7. Chugh A, Panda S. Strengthening Clustering Through Relay Nodes in Sensor Networks. Procedia Computer Science. 2018;132:689–695. Available from: https://doi.org/10.1016/j.procs.2018.05.072
  8. Qadori HQ, Zukarnain ZA, Hanapi ZM, Subramaniam S. FuMAM: Fuzzy-Based Mobile Agent Migration Approach for Data Gathering in Wireless Sensor Networks. IEEE Access. 2018;6:15643–15652. Available from: https://doi.org/10.1109/ACCESS.2018.2814064
  9. Puranikmath VI, Harakannanavar SS, Kumar S, Torse D. Comprehensive Study of Data Aggregation Models, Challenges and Security Issues in Wireless Sensor Networks. International Journal of Computer Network and Information Security. 2019;11(3):30–39. Available from: https://www.mecs-press.org/ijcnis/ijcnis-v11-n3/IJCNIS-V11-N3-5.pdf
  10. Yugha R, Chithra S. A survey on technologies and security protocols: Reference for future generation IoT. Journal of Network and Computer Applications. 2020;169:102763. Available from: https://doi.org/10.1016/j.jnca.2020.102763
  11. Yousefpoor MS, Barati H. DSKMS: a dynamic smart key management system based on fuzzy logic in wireless sensor networks. Wireless Networks. 2020;26(4):2515–2535. Available from: https://doi.org/10.1007/s11276-019-01980-1
  12. Tamilarasi N, Santhi SG. Detection of Wormhole Attack and Secure Path Selection in Wireless Sensor Network. Wireless Personal Communications. 2020;114(1):329–345. Available from: https://doi.org/10.1007/s11277-020-07365-4
  13. Fang W, Wen X, Xu J, Zhu J. CSDA: a novel cluster-based secure data aggregation scheme for WSNs. Cluster Computing. 2019;22(S3):5233–5244. Available from: https://doi.org/10.1007/s10586-017-1195-7
  14. Sunil S, Harakannanavar, Jayalaxmi H, Shridhar H, Premananda R, Jambukesh HJ, et al. Huffman coding: Energy efficient algorithm in wireless networks. International Journal of Health Sciences. 2022;6(3):3624–3641. Available from: https://media.neliti.com/media/publications/429957-huffman-coding-energy-efficient-algorith-64a18cc3.pdf
  15. Puranikmath VI, Sridhar I, Rahul P. Redundancy issues in Wireless Sensor Networks. IOP Congnitive sensors. 2022;1. Available from: https://iopscience.iop.org/book/edit/978-0-7503-5326-7/chapter/bk978-0-7503-5326-7ch8
  16. Khedr AM, Aziz A, Osamy W. Successors of PEGASIS protocol: A comprehensive survey. Computer Science Review. 2021;39:100368. Available from: https://doi.org/10.1016/j.cosrev.2021.100368


© 2023 Puranikmath et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.