• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 7, Pages: 636-651

Original Article

Resource utilization prediction with multipath traffic routing for congestion-aware VM migration in cloud computing

Received Date:19 October 2020, Accepted Date:23 February 2021, Published Date:03 March 2021


Background: The Load Balancing (LB) schemes in cloud computing consider both current and future utilization of resources to decide the most suitable Virtual Machines (VMs) to be migrated to the most appropriate Physical Machines (PMs). But, the possibility of network congestion occurrence was high when increasing the bandwidth use between VMs within the cloud data centers. Also, a less-than-optimal migration of VMs can lead to high network traffic since it causes inter-VM traffic for traversing the bottleneck network routes. Objective: To enhance the efficiency of LB and reduce the possibility of congestion occurrence during VM migration in cloud data centers. Methods: Osmotic Hybrid artificial Bee and Ant Colony with Future Utilization Prediction with Multipath Traffic Routing (OH-BAC-FUP-MTR) mechanism are presented in this article to achieve the above objective. Initially, the OH-BAC-FUP mechanism is performed to decide the most suitable VMs to be migrated to the most suitable PMs. During VM migration, if any congestion exists due to high bandwidth use or traffic flows, then the MTR algorithm is applied to partition the flows and route them through multiple link-disjoint routes. Based on this, the congestion is avoided while ensuring the bandwidth and security grade demands. Also, the highest traffic on the path is applied as a congestion factor. Moreover, the current and future network states are taken into account for MTR to select the most optimal route from multiple routes with no consideration of the past use of the paths. Findings: The simulation outcomes demonstrate the OH-BAC-FUP-MTR mechanism consumes 8.74% of overall energy, 6.8% of Service Level Agreement violation Time per Active Host (SLATAH), 27.63% of Performance Degradation due to Migration (PDM), 22.98% of SLA Violation (SLAV), 27.27% of VM migrations and 30.77% of hosts shutdown compared to the OH-BAC-FUP using Linear Regression (LR) and Optimal Piecewise LR (OPLR).

Keywords: Cloud computing; load balancing; VM migration; OH-BAC-FUP; multipath traffic routing


  1. Nashaat H, Ashry N, Rizk R. Smart elastic scheduling algorithm for virtual machine migration in cloud computing. The Journal of Supercomputing. 2019;75(7):3842–3865. Available from: https://dx.doi.org/10.1007/s11227-019-02748-2
  2. Afzal S, Kavitha G. Load balancing in cloud computing – A hierarchical taxonomical classification. Journal of Cloud Computing. 2019;8(1). Available from: https://dx.doi.org/10.1186/s13677-019-0146-7
  3. Sui X, Liu D, Li L, Wang H, Yang H. Virtual machine scheduling strategy based on machine learning algorithms for load balancing. EURASIP Journal on Wireless Communications and Networking. 2019. Available from: https://doi.org/10.1186/s13638-019-1454-9
  4. Pourghebleh B, Hayyolalam V. A comprehensive and systematic review of the load balancing mechanisms in the Internet of Things. Cluster Computing. 2020;23(2):641–661. Available from: https://dx.doi.org/10.1007/s10586-019-02950-0
  5. Dong E, Fu X, Xu M, Yang Y. Low-Cost Datacenter Load Balancing With Multipath Transport and Top-of-Rack Switches. IEEE Transactions on Parallel and Distributed Systems. 2020;31:2232–2247. Available from: https://doi.org/10.1109/tpds.2020.2989441
  6. Rajeshkannan R, Aramudhan M. Comparative Study of Load Balancing Algorithms in Cloud Computing Environment. Indian Journal of Science and Technology. 2016;9(20):1–7. Available from: https://dx.doi.org/10.17485/ijst/2016/v9i20/85866
  7. Ghomi EJ, Rahmani AM, Qader NN. Load-balancing algorithms in cloud computing: A survey. Journal of Network and Computer Applications. 2017;88:50–71. Available from: https://dx.doi.org/10.1016/j.jnca.2017.04.007
  8. Villari M, Fazio M, Dustdar S, Rana O, Ranjan R. Osmotic Computing: A New Paradigm for Edge/Cloud Integration. IEEE Cloud Computing. 2016;3(6):76–83. Available from: https://dx.doi.org/10.1109/mcc.2016.124
  9. Gamal M, Rizk R, Mahdi H, Elnaghi BE. Osmotic Bio-Inspired Load Balancing Algorithm in Cloud Computing. IEEE Access. 2019;7:42735–42744. Available from: https://dx.doi.org/10.1109/access.2019.2907615
  10. Prakash RG, Shankar R, Fupa DS. Future Utilization Prediction Algorithm based Load Balancing Scheme for Optimal VM Migration in Cloud Computing. IEEE Fourth International Conference on Inventive Systems and Control. 2020;p. 638–644. Available from: https://doi.org/10.1109/ICISC47916.2020.9171059
  11. Cziva R, Jouet S, Stapleton D, Tso FP, Pezaros DP. SDN-Based Virtual Machine Management for Cloud Data Centers. IEEE Transactions on Network and Service Management. 2016;13(2):212–225. Available from: https://dx.doi.org/10.1109/tnsm.2016.2528220
  12. Vu HT, Hwang S. A Traffic and Power-aware Algorithm for Virtual Machine Placement in Cloud Data Center. International Journal of Grid and Distributed Computing. 2014;7(1):21–32. Available from: https://dx.doi.org/10.14257/ijgdc.2014.7.1.03
  13. Reguri VR, Kogatam S, Moh M. Energy efficient traffic-aware virtual machine migration in green cloud data centers. IEEE 2nd International Conference on Big Data Security on Cloud, IEEE International Conference on High Performance and Smart Computing and IEEE International Conference on Intelligent Data and Security. 2016;p. 268–273. Available from: https://doi.org/10.1109/BigDataSecurity-HPSC-IDS.2016.55
  14. Deshpande U, Keahey K. Traffic-sensitive Live Migration of Virtual Machines. Future Generation Computer Systems. 2017;72:118–128. Available from: https://dx.doi.org/10.1016/j.future.2016.05.003
  15. Liu J, Wu Z, Wu J, Dong J, Zhao Y, Wen D. A Weibull distribution accrual failure detector for cloud computing. PloS One. 2017;12. Available from: https://doi.org/10.1371/journal.pone.0173666
  16. Cui Y, Yang Z, Wang XS, Yan X, S. Traffic-aware virtual machine migration in topology-adaptive DCN. IEEE/ACM Transactions on Networking. 2017;25(6):3427–3440. Available from: https://doi.org/10.1109/TNET.2017.2744643
  17. Fu X, Chen J, Deng S, Wang J, Zhang L. Layered virtual machine migration algorithm for network resource balancing in cloud computing. Frontiers of Computer Science. 2018;12(1):75–85. Available from: https://doi.org/10.1007/s11704-016-6135-9
  18. Hsieh SY, Liu CS, Buyya R, Zomaya AY. Utilization-prediction-aware virtual machine consolidation approach for energy-efficient cloud data centers. Journal of Parallel and Distributed Computing. 2020;139:99–109. Available from: https://dx.doi.org/10.1016/j.jpdc.2019.12.014
  19. Afzal S, Kavitha G. A Hybrid Multiple Parallel Queuing Model to Enhance QoS in Cloud Computing. International Journal of Grid and High Performance Computing. 2020;12(1):18–34. Available from: https://dx.doi.org/10.4018/ijghpc.2020010102


© 2021 GowriPrakash et al..This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.