• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 16, Pages: 1702-1712

Original Article

Solution of Fractional Differential Equations Involving Hilfer-Hadamard Fractional Derivatives

Received Date:26 October 2023, Accepted Date:08 March 2024, Published Date:19 April 2024


Objectives: The aim is to establish prerequisite properties for the Hilfer-Hadamard fractional derivatives and address boundary value problems related to fractional polar Laplace and fractional Sturm-Liouville equations involving Hilfer-Hadamard fractional derivatives. Methods: Existing definitions and findings are utilized to obtain the properties for fractional derivatives, and the Adomian decomposition method is employed to solve the fractional differential equations. Findings: Validity conditions for the law of exponents are determined, and the study investigates the fractional differential equations and their corresponding solutions, possessing the capacity to replace the traditional polar Laplace and Sturm-Liouville boundary value problems to effectively represent real-world phenomena. Novelty: The study introduces the substitution of two consecutively operated Hilfer-Hadamard fractional derivatives with a corresponding single Hilfer-Hadamard fractional derivative using the law of exponents. Additionally, the polar Laplace and Sturm-Liouville boundary value problems are extended to their respective fractional counterparts, expressed in a concise format using HilferHadamard fractional derivatives.

Keywords: Adomian decomposition method, Hilfer-Hadamard fractional derivative, Fractional polar Laplace equation, Fractional Sturm-Liouville boundary value problem


  1. Singh H, Srivastava HM, Nieto JJ. Handbook of Fractional Calculus for Engineering and Science (1). (pp. 1-318) New York, USA. Chapman and Hall/CRC. 2022.
  2. Hilfer R. Applications of Fractional Calculus in Physics. (pp. 1-472) World Scientific. 2000.
  3. Kilbas AA, Srivastava HM, Trujillo JJ. Theory and applications of fractional differential equations, North-Holland Mathematics Studies. (Vol. 204, pp. 1-523) Elsevier. 2006.
  4. Zafar R, Rehman Mu, Shams M. On Caputo modification of Hadamard-type fractional derivative and fractional Taylor series. Advances in Difference Equations. 2020;2020(1):1–13. Available from: https://dx.doi.org/10.1186/s13662-020-02658-1
  5. Promsakon C, Ntouyas SK, Tariboon J. Hilfer-Hadamard Nonlocal Integro-Multipoint Fractional Boundary Value Problems. Journal of Function Spaces. 2021;2021:1–9. Available from: https://doi.org/10.1155/2021/8031524
  6. Jadhav C, Dale T, Dhondge S. A Review on Applications of Fractional Differential Equations in Engineering Domain. Mathematical Statistician and Engineering Applications. 2022;71(4):7147–7166. Available from: https://doi.org/10.17762/msea.v71i4.1331
  7. Vu H, Phu ND, Hoa NV. A survey on random fractional differential equations involving the generalized Caputo fractional-order derivative. Communications in Nonlinear Science and Numerical Simulation. 2023;121:107202. Available from: https://doi.org/10.1016/j.cnsns.2023.107202
  8. Tarasov VE. From fractional differential equations with Hilfer derivatives. Computational and Applied Mathematics. 2021;40(8). Available from: https://doi.org/10.1007/s40314-021-01674-5
  9. Jadhav C, Dale T, Chinchane V. A Method to solve ordinary fractional differential equations using Elzaki and Sumudu transform. Journal of Fractional Calculus and Nonlinear Systems. 2023;4(1):8–16. Available from: https://doi.org/10.48185/jfcns.v4i1.757
  10. Alfaqeih S, Bakıcıerler G, Mısırlı E. Application of Double Shehu Transforms to Caputo Fractional Partial DifferentialEquations. Punjab University Journal of Mathematics. 2022;54(1):1–13. Available from: https://dx.doi.org/10.52280/pujm.2022.540101
  11. Wu GC, Kong H, Luo M, Fu H, Huang LL. Unified predictor–corrector method for fractional differential equations with general kernel functions. Fractional Calculus and Applied Analysis. 2022;25(2):648–667. Available from: https://dx.doi.org/10.1007/s13540-022-00029-z
  12. Guo P. The Adomian Decomposition Method for a Type of Fractional Differential Equations. Journal of Applied Mathematics and Physics. 2019;7(10):2459–2466. Available from: https://doi.org/10.4236/jamp.2019.710166
  13. Alrawashdeh MS, Migdady SA, Argyros IK. An Efficient Mechanism to Solve Fractional Differential Equations Using Fractional Decomposition Method. Symmetry. 2021;13(6):1–19. Available from: https://dx.doi.org/10.3390/sym13060984
  14. Bachir FS, Said A, Benbachır M, Benchohra M. Hilfer-Hadamard Fractional Differential Equations; Existence and Attractivity. Advances in the Theory of Nonlinear Analysis and its Application. 2021;5(1):49–57. Available from: https://dx.doi.org/10.31197/atnaa.848928
  15. Vivek D, Kanagarajan K, Elsayed EM. A study of fractional integro-differential equations via Hilfer-Hadamard fractional derivative. General Mathematics. 2019;27(1):71–84. Available from: https://dx.doi.org/10.2478/gm-2019-0007
  16. Masood S, Hajira, Khan H, Shah R, Mustafa S, Khan Q, et al. A New Modified Technique of Adomian Decomposition Method for Fractional Diffusion Equations with Initial-Boundary Conditions. Journal of Function Spaces. 2022;2022:1–12. Available from: https://doi.org/10.1155/2022/6890517
  17. Paul GC, Khatun S, Nuruzzaman M, Kumar D, Ali ME, Bilkis F, et al. Solving protoplanetary structure equations using Adomian decomposition method. Heliyon. 2021;7(10):1–9. Available from: https://doi.org/10.1016/j.heliyon.2021.e08213
  18. Sun K, He S, Wang H. Adomian Decomposition Method. In: Solution and Characteristic Analysis of Fractional-Order Chaotic Systems. (pp. 49-60) Singapore. Springer. 2022.
  19. Manohar P, Chanchlani L, Mallah IA. Solutions of Cauchy problems with Caputo-Hadamard fractional derivatives. Journal of Rajasthan Academy of Physical Sciences. 2021;20(3&4):165–174. Available from: https://raops.org.in/epapers/dec21_3.pdf


© 2024 Chanchlani et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.