• P-ISSN 0974-6846 E-ISSN 0974-5645

# Indian Journal of Science and Technology

## Article

• VIEWS 267
• PDF 78

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 13, Pages: 1272-1282

Original Article

## Solving Time-Fractional Fitzhugh–Nagumo Equation using Homotopy Perturbation Method

Received Date:25 November 2023, Accepted Date:26 February 2024, Published Date:21 March 2024

## Abstract

Objectives: This study aims to explore solutions to the time-fractional Fitzhugh-Nagumo equation, a nonlinear reaction-diffusion equation. Method: We utilize the Homotopy Perturbation Method (HPM) as a proficient analytical approach for addressing the time-fractional Fitzhugh-Nagumo equation. The HPM offers a structured method for deriving approximate solutions in the shape of convergent series, enabling accurate solutions even for intricate nonlinear fractional equations. Finding: The series solution obtained is validated by comparing it with numerical methods, showcasing its precision and effectiveness. Additionally, we assessed the error across various time and space values. Our analysis and computations reveal that the Homotopy Perturbation Method (HPM) stands out for providing precise approximations while maintaining computational efficiency. It's clear that this method presents a robust alternative to conventional numerical techniques, particularly in situations where analytical solutions are difficult to obtain. Novelty: The application of the Homotopy Perturbation Method to the Time-fractional Fitzhugh-Nagumo Equation has been effectively explored, with specific examples showing a strong agreement between the exact solution and the obtained solution.

Keywords: Time-Fractional Fitzhugh–Nagumo Equation, Homotopy Perturbation Method, Riemann-Liouville fractional integral, Caputo fractional derivative, Fractional Homotopy Perturbation Method

## References

1. Kiryakova V. A Guide to Special Functions in Fractional Calculus. Mathematics. 2021;9(1):1–40. Available from: https://doi.org/10.3390/math9010106
2. Jacob JS, Priya JH, Karthika A. Applications of Fractional Calculus in science and Engineering. Journal of Critical Reviews. 2020;7(13):4385–4394. Available from: https://www.jcreview.com/admin/Uploads/Files/624890460526e8.90194993.pdf
3. Boulaaras S, Jan R, Pham VTT. Recent advancement of fractional calculus and its applications in physical systems. The European Physical Journal Special Topics. 2023;232(14-15):2347–2350. Available from: https://doi.org/10.1140/epjs/s11734-023-01002-4
4. Sonawane J, Sontakke B, Takale K. Approximate Solution of Sub diffusion Bio heat Transfer Equation. Baghdad Science Journal. 2023;20(1(SI)):394–399. Available from: https://doi.org/10.21123/bsj.2023.8410
5. Kharde U, Takale K, Gaikwad S. Numerical solution of time fractional drug concentration equation in central nervous system. Journal of Mathematical and Computational Science. 2021;11(6):7317–7336. Available from: https://scik.org/index.php/jmcs/article/view/6470
6. Almeida R, Torres DFM, . A survey on fractional variational calculus. In: Kochubei A, Luchko Y., eds. Basic Theory. (Vol. 1, pp. 347-360) Berlin, Boston, USA. De Gruyter. 2019.
7. Cevikel AC, Bekir A, Arqub OA, Abukhaled M. Solitary wave solutions of Fitzhugh–Nagumo-type equations with conformable derivatives. Frontiers in Physics. 2022;10:1–7. Available from: https://doi.org/10.3389/fphy.2022.1028668
8. Ramani P, Khan AM, Suthar DL, Kumar D. Approximate Analytical Solution for Non-Linear Fitzhugh–Nagumo Equation of Time Fractional Order Through Fractional Reduced Differential Transform Method. International Journal of Applied and Computational Mathematics. 2022;8(2). Available from: https://doi.org/10.1007/s40819-022-01254-z
9. İnan B, Ali KK, Saha A, Ak T. Analytical and numerical solutions of the Fitzhugh-Nagumo equation and their multistability behavior. Numerical Methods for Partial Differential Equations. 2021;37(1):7–23. Available from: https://doi.org/10.1002/num.22516
10. Karaagac B. A Trigonometric Approach to Time Fractional FitzHugh-Nagumo Model on Nerve Pulse Propagation. Mathematical Sciences And Applications E-Notes. 2022. 2022;10(3):135–145. Available from: https://doi.org/10.36753/msaen.1025072
11. Alam M, Haq S, Ali I, Ebadi MJ, Salahshour S. Radial Basis Functions Approximation Method for Time-Fractional FitzHugh–Nagumo Equation. Fractal and Fractional. 2023;7(12):1–41. Available from: https://doi.org/10.3390/fractalfract7120882
12. Sontakke B, Pandit R. Numerical Solution of Time Frcational Telegraph FitzHugh-Nagumo Equation. International Journal of Emerging Technologies and Innovative Research. 2019;6(3):125–127. Available from: https://www.jetir.org/papers/JETIRAL06028.pdf
13. ZYF, Ali KK, Maneea M, MI, Yao SW. Solution of time fractional Fitzhugh-Nagumo equation using semi analytical techniques. Results in Physics. 2023;51:1–13. Available from: https://doi.org/10.1016/j.rinp.2023.106679
14. Javeed S, Baleanu D, Waheed A, Khan MS, Affan H. Analysis of Homotopy Perturbation Method for Solving Fractional Order Differential Equations. Mathematics. 2019;7(1):1–14. Available from: https://doi.org/10.3390/math7010040