• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 10, Pages: 881-890

Original Article

Stagnation-Point Slip Flow of Hybrid Ferrofluid Past Exponentially Stretching Sheet in Darcy-Forchheimer Space

Received Date:22 November 2023, Accepted Date:22 January 2024, Published Date:27 February 2024

Abstract

Objectives: The present article provides a detailed analysis on the Darcy-Forchheimer hybrid nanofluids flow past an exponentially stretching sheet in the presence of mixed convection with slip conditions and the impacts of different relevant parameters of the fluid flow for velocity and temperature profiles. Methods: In order to create hybrid nanofluids, two magnetic nanoparticles, magnetite ( ) and cobalt ferrite ( ), are taken into consideration. The governing boundary layer coupled partial differential equations are transformed into a system of non-linear ordinary differential equations, which are then solved numerically by using the bvp4c solver available in the Matlab software. A comprehensive parametric analysis has been performed to show the effects of the convective parameter, velocity ratio parameter, porosity parameter, forchheimer parameter, solid volume fractions of and , velocity slip and temperature jump on the fluid velocity and temperature profiles as well as the local skin-friction coefficient and local Nusselt number within the boundary layer. Findings: For higher values of , , , , the velocity field grows, and it declines for , Fr, and A. The temperature field thickness is higher for , Fr, , and A, while decreases for and . The local skin friction coefficient diminishes as rise in the values of , , , Fr, , , A and B. The local Nusselt number shows increasing behaviour for increasing amount of , , , Fr, , , A and B. Novelty: The novelty of the current work is the analysis of the flow of Darcy-Forchheimer hybrid nanofluids across an exponentially stretched sheet in the presence of mixed convection with slip conditions. Here, water is used as base fluid and magnetite, cobalt ferrite being used as hybrid nanoparticles for the present study.

Keywords: Hybrid nanofluids, Exponentially stretching sheet, Mixed convection, Velocity slip, Temperature jump

References

  1. Thakur A, Sood S. Comparative investigation of the mixed convective stagnated flow of hybrid nanofluids past an exponentially stretching sheet. ZAMM-Journal of Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik. 2022;102(12):1–14. Available from: https://doi.org/10.1002/zamm.202100419
  2. Lund LA, Omar Z, Raza J, Khan I. Magnetohydrodynamic flow of Cu–Fe3O4/H2O hybrid nanofluid with effect of viscous dissipation: dual similarity solutions. Journal of Thermal Analysis and Calorimetry. 2021;143:915–927. Available from: https://doi.org/10.1007/s10973-020-09602-1
  3. Hayat T, Nadeem S, Khan AU. Numerical analysis of Ag-CuO/water rotating Hybrid nanofluid with heat generation/absorption. Canadian Journal of Physics . 2018;97(2):644–650. Available from: https://doi.org/10.1139/cjp-2018-0011
  4. Mabood F, Yusuf TA, Khan WA. Cu-Al2O3 –H2O Hybrid Nanofluid flow with melting heat transfer, Irreversibility Analysis and Non-Linear Thermal Radiation. Journal of Thermal Analysis and Calorimetry . 2021;143:973–984. Available from: https://doi.org/10.1007/s10973-020-09720-w
  5. Ali A, Noreen A, Saleem S, Aljohani AF, Awais M. Heat transfer analysis of Cu–Al2O3 hybrid nanofluid with heat flux and viscous dissipation. Journal of Thermal Analysis and Calorimetry . 2020;143(3):2367–2377. Available from: https://doi.org/10.1007/s10973-020-09910-6
  6. Li Z, Shahsavar A, Niazi K, Al-Rashed AAAA, Rostami S. Numerical assessment on the hydrothermal behavior and irreversibility of MgO-Ag/water hybrid nanofluid flow through a sinusoidal hairpin heat-exchanger. International Communications in Heat and Mass Transfer. 2020;115:104628. Available from: https://doi.org/10.1016/j.icheatmasstransfer.2020.104628
  7. El-Zahar ER, Rashad AM, Saad W, Seddek LF. Magneto-Hybrid Nanofluids Flow via Mixed Convection past a Radiative Circular Cylinder. Scientific Reports. 2020;10(1):1–13. Available from: https://doi.org/10.1038/s41598-020-66918-6
  8. Darcy H. Dalmont V., ed. Les fontaines publiques de la ville de Dijon. (pp. 1-647) 1856.
  9. Forchheimer P. Wasserbewegung durch boden. In: Zeitschrift des Vereines Deutscher Ingenieure. (Vol. 45, pp. 1781-1788) 1901.
  10. Sharma S. MHD Boundary Layer Flow Past an Exponentially Stretching Sheet with Darcy-Forchheimer Flow of Nanofluids. Indian Journal Of Science And Technology. 2022;15(33):1594–1604. Available from: https://doi.org/10.17485/IJST/v15i33.607
  11. Asghar A, Chandio AF, Shah Z, Vrinceanu N, Deebani W, Shutaywi M, et al. Magnetized mixed convection hybrid nanofluid with effect of heat generation/absorption and velocity slip condition. Heliyon. 2023;9(2):1–13. Available from: https://doi.org/10.1016/j.heliyon.2023.e13189
  12. Ullah Z, Zari I, Gul T, Ali I, Alghamdi WI, Ali F. Darcy-Forchheimer hybrid nanofluids flow with quadratic convection over a stretched tube. Advances in Mechanical Engineering. 2023;15(6):1–10. Available from: https://doi.org/10.1177/16878132231180866
  13. Gohar, Khan TS, Sene N, Mouldi A, Brahmia A. Heat and Mass Transfer of the Darcy-Forchheimer Casson Hybrid Nanofluid Flow due to an Extending Curved Surface. Journal of Nanomaterials. 2022;2022:1–12. Available from: https://doi.org/10.1155/2022/3979168
  14. Waini I, Ishak A, Pop I. Hybrid nanofluid flow induced by an exponentially shrinking sheet. Chinese Journal of Physics. 2020;68:468–482. Available from: https://doi.org/10.1016/j.cjph.2019.12.015
  15. Kierzenka J, Shampine LF. A BVP solver based on residual control and the Maltab PSE. ACM Transactions on Mathematical Software. 2001;27(3):299–316. Available from: https://doi.org/10.1145/502800.502801
  16. Jafar AB, Shafie S, Ullah I, Safdar R, Jamshed W, Pasha AA, et al. Mixed convection flow of an electrically conducting viscoelastic fluid past a vertical nonlinearly stretching sheet. Scientific Reports. 2022;12(1):1–13. Available from: https://doi.org/10.1038/s41598-022-18761-0
  17. Sharma S, Dadheech A, Parmar A, Arora J, Al-Mdallal Q, Saranya S. MHD micro polar fluid flow over a stretching surface with melting and slip effect. Scientific Reports. 2023;13(1):1–15. Available from: https://doi.org/10.1038/s41598-023-36988-3
  18. Trivedi M, Otegbeye O, Ansari MS, Fayaz T. Impact of thermal jump condition on Jeffrey fluid flow consisting nanoparticles: An unsteady case. International Journal of Thermofluids. 2023;18:1–10. Available from: https://doi.org/10.1016/j.ijft.2023.100331

Copyright

© 2024 Prasad et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.