• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 20, Pages: 1495-1504

Original Article

Statistical Driven Feature Selection for Prognostic Reasoning and Insight Exploration of Areca Nut Crop using Data Analytics Approach

Received Date:17 February 2023, Accepted Date:26 April 2023, Published Date:25 May 2023


Objectives: To develop a prognostic reasoning model for discovering insights about the areca nut crop and to recommend an optimal strategy for improving crop productivity and heightening the lifetime of the areca nut tree using a statistical feature selection technique namely Kolmogorov–Smirnov (KS) test and data analytics approach. Methods: Data for the study was gathered by distributing questionnaires to farmers cultivating the areca nut crop in the Mangaluru region. Farmers can plan ahead of time to improve crop yield and estimate the lifetime of the tree with this strategy. The Kolmogorov–Smirnov test is employed for the pre-processed data, and optimal features are selected. To forecast crop yield and tree lifetime, various classifiers namely decision tree, support vector machine (SVM), and artificial neural network (ANN) are applied to 300 test samples and their performance is evaluated. Findings: The findings of the experiment show that the decision tree works better than other classifiers for crop yield and tree lifetime with a prediction accuracy of 96 % and 94.66 % respectively. Novelty: The proposed study performs the extraction of significant features of the areca nut crop using the KS test that results in the prediction of agricultural production and forecasting tree lifetime.

Keywords: Arecanut Crop; Crop Yield; Tree Lifetime; Feature Selection; Kolmogorov-Smirnov Test; Data Analytics; Prognostic Reasoning Model


  1. Cardoso DO, Galeno TD. Online evaluation of the Kolmogorov–Smirnov test on arbitrarily large samples. Journal of Computational Science. 2023;67:101959. Available from: https://doi.org/10.1016/j.jocs.2023.101959
  2. Krithika KM, Maheswari N, Sivagami M. Models for feature selection and efficient crop yield prediction in the groundnut production. Research in Agricultural Engineering. 2022;68(3):131–141. Available from: https://doi.org/10.17221/15/2021-RAE
  3. Kuradusenge M, Hitimana E, Hanyurwimfura D, Rukundo P, Mtonga K, Mukasine A, et al. Crop Yield Prediction Using Machine Learning Models: Case of Irish Potato and Maize. Agriculture. 2023;13(1):225. Available from: https://doi.org/10.3390/agriculture13010225
  4. Abbas F, Afzaal H, Farooque AA, Tang S. Crop Yield Prediction through Proximal Sensing and Machine Learning Algorithms. Agronomy. 2020;10(7):1046. Available from: https://doi.org/10.3390/agronomy10071046
  5. Paudel D, Boogaard H, Wit AD, Janssen S, Osinga S, Pylianidis C, et al. Machine learning for large-scale crop yield forecasting. Agricultural Systems. 2021;187:103016. Available from: https://doi.org/10.1016/j.agsy.2020.103016
  6. Jin Y, Guo J, Ye H, Zhao J, Huang W, Cui B. Extraction of Arecanut Planting Distribution Based on the Feature Space Optimization of PlanetScope Imagery. Agriculture. 2021;11(4):371. Available from: https://doi.org/10.3390/agriculture11040371
  7. Pant J, Pant RP, Singh MK, Singh DP, Pant H. Analysis of agricultural crop yield prediction using statistical techniques of machine learning. Materials Today: Proceedings. 2021;46:10922–10926. Available from: https://doi.org/10.1016/j.matpr.2021.01.948
  8. Cedric LS, Adoni WYH, Aworka R, Zoueu JT, Mutombo FK, Krichen M, et al. Crops yield prediction based on machine learning models: Case of West African countries. Smart Agricultural Technology. 2022;2:100049. Available from: https://doi.org/10.1016/j.atech.2022.100049
  9. Pakkala PR, Rai BS. A Prognostic Reasoning Model for Improving Areacanut Crop Productivity using Data Analytics Approach. 2022 International Conference on Distributed Computing, VLSI, Electrical Circuits and Robotics (DISCOVER). 2022;p. 1–6. Available from: https://doi.org/10.1109/DISCOVER55800.2022.9974945
  10. Guthu RP, Bellipady SR. A Formal Statistical Data Modeling for Knowledge Discovery and Prognostic Reasoning of Arecanut Crop using Data Analytics. International Journal of Software Science and Computational Intelligence (IJSSCI). 2022;14(1):1–27. Available from: https://doi.org/10.4018/IJSSCI.311447
  11. Pakkala R, Rai P, Bellipady SR. Impact of Syntactical and Statistical Pattern Recognition on Prognostic Reasoning. Handbook of Research on Machine Learning Techniques for Pattern Recognition and Information Security 2021. ;p. 38–55. Available from: https://doi.org/10.4018/978-1-7998-3299-7.ch003
  12. Batool D, Shahbaz M, Asif HS, Shaukat K, Alam TM, Hameed IA, et al. A Hybrid Approach to Tea Crop Yield Prediction Using Simulation Models and Machine Learning. Plants. 1925;11(15):1925. Available from: https://doi.org/10.3390/plants11151925


© 2023 Pakkala et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.