• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 7, Pages: 485-491

Original Article

Tamil Speech Synthesizer App for Android: Text Processing Module Enhancement

Received Date:10 November 2022, Accepted Date:17 January 2023, Published Date:21 February 2023


Objectives: Designing dynamic computer systems that are effective, efficient, simple, and satisfying to use is becoming extremely important in this age of information and communication technology. Text to Speech or Speech Synthesis is one of the many methods being investigated by researchers to improve Human-Computer Interaction. The goal here is to improve the text processing component of the Tamil voice synthesizer by including a text normalizer and loan word identification that is efficient and reliable. Methods: Text normalization is conducted on unconstrained Tamil text to turn non-standard terms into common words to reduce confusing utterances during intermediate word processing. Loan/Native words in Tamil literature are detected to enhance the Tamil voice synthesizer system’s pronunciation model. Findings: During normalization, non-standard Tamil words are replaced with standard ones to reduce ambiguous utterances during interim processing. A pronunciation model is built to improve the Tamil speech synthesizer system by identifying loan words in Tamil text. A syllable classifier is presented in this study, based on a decision list approach, which can handle various types of non-stationary sounds. Novelty: We also disclose a ’loan/native word classifier’ based on multiple linear regressions that perform well even with small words of three syllables. Such sophisticated text processors are required in today’s dominating Digital, Information-Communication Technology, and Human-Computer Interaction age.

Keywords: Mobile Communication Technology; HumanComputer Interaction; Speech Synthesis Affirms; Syllable Classifier; Prerecorded database


  1. Joshi S, Bairag V. Recent trends in text to speech synthesis of Indian Languages. Helix. 2019;9:4931–4936. Available from: https://doi.org/10.29042/2019-4931-4936
  2. Tebbi H, Hamadouche M, Azzoune H. A new hybrid approach for speech synthesis: application to the Arabic language. International Journal of Speech Technology. 2019;22(3):629–637. Available from: https://doi.org/10.1007/s10772-018-9499-4
  3. Singh A, Kaur N, Kukreja V, Kadyan V, Kumar M. Computational intelligence in processing of speech acoustics: a survey. Complex & Intelligent Systems. 2022;8(3):2623–2661. Available from: https://doi.org/10.1007/s40747-022-00665-1
  4. Joshi MM, Agarwal S, Shaikh S, Pitale P. Text to speech synthesis for Hindi language using festival framework. International Research Journal of Engineering and Technology. 2019;6:630–632. Available from: https://www.irjet.net/archives/V6/i4/IRJET-V6I4142.pdf
  5. Rajendran V, Kumar GB. A Robust Syllable Centric Pronunciation Model for Tamil Text To Speech Synthesizer. IETE Journal of Research. 2019;65(5):601–612. Available from: https://doi.org/10.1080/03772063.2018.1452642
  6. Nadig PP, Pooja G, Kavya D, Chaithra R, Radhika AD. Survey on text-to-speech Kannada using Neural Networks. International Journal of Advance Research. 2019;5:128. Available from: https://www.ijariit.com/manuscripts/v5i6/V5I6-1159.pdf
  7. Kewley-Port D, Nearey TM. Speech synthesizer produced voices for disabled, including Stephen Hawking. The Journal of the Acoustical Society of America. 2020;148(1):1–2. Available from: https://doi.org/10.1121/10.0001490
  8. Balyan A. An Overview on Resources for Development of Hindi Speech Synthesis System. New Ideas Concerning Science and Technology Vol. 11. 2021;16:57–63. Available from: https://doi.org/10.9734/bpi/nicst/v11/5977D
  9. Jayakumari J, Jalin AF. An Improved Text to Speech Technique for Tamil Language Using Hidden Markov Model. 2019 7th International Conference on Smart Computing & Communications (ICSCC). 2019;28:1–5. Available from: https://doi.org/10.1109/ICSCC.2019.8843683
  10. Herbert B, Wigley G, Ens B, Billinghurst M. Cognitive load considerations for Augmented Reality in network security training. Computers & Graphics. 2022;102:566–591. Available from: https://dx.doi.org/10.1016/j.cag.2021.09.001
  11. Gujarathi PV, Patil SR. Gaussian Filter-Based Speech Segmentation Algorithm for Gujarati Language. Smart Computing Techniques and Applications. 2021;2021:747–756. Available from: https://doi.org/10.1007/978-981-16-1502-3_74
  12. Kim C, Gowda D, Lee D, Kim J, Kumar A, Kim S, et al. A Review of On-Device Fully Neural End-to-End Automatic Speech Recognition Algorithms. 2020 54th Asilomar Conference on Signals, Systems, and Computers. 2020;1:277–283. Available from: https://doi.org/10.1109/IEEECONF51394.2020.9443456
  13. Kodhai SD. Textaloud Assistant App Development for Multilanguage. International Journal of Innovative Technology and Exploring Engineering. 2019;8:1–5. Available from: https://www.ijitee.org/wp-content/uploads/papers/v8i7s/G10010587S19.pdf
  14. Narvani V, Arolkar H. Information and Communication Technology for Competitive Strategies. Lecture Notes in Networks and Systems. 2021;190. Available from: https://doi.org/10.1007/978-981-16-0882-7_84
  15. Changrampadi MH, Shahina A, Narayanan MB, Khan AN. End-to-End Speech Recognition of Tamil Language. 2022. Available from: https://doi.org/10.32604/iasc.2022.022021
  16. Araya M, Alehegn M. Text to Speech Synthesizer for Tigrigna Linguistic using Concatenative Based approach with LSTM model. Indian Journal of Science and Technology. 2022;15(1):19–27. Available from: https://doi.org/10.17485/IJST/v15i1.1935
  17. Divyasri K, Gayathri GL, Swaminathan K, Durairaj T, Bharathi B. PANDAS@ TamilNLP-ACL2022: Emotion Analysis in Tamil Text using Language Agnostic Embeddings. Proceedings of the Second Workshop on Speech and Language Technologies for Dravidian Languages. 2022:105–111. Available from: https://doi.org/10.18653/v1/2022.dravidianlangtech-1.17
  18. Gamallo P, Pichel JR, Alegria I. From language identification to language distance. Physica A: Statistical Mechanics and its Applications. 2017;484:152–162. Available from: https://doi.org/10.1016/j.physa.2017.05.011
  19. Romsdorfer H, Pfister B. Text analysis and language identification for polyglot text-to-speech synthesis. Speech Communication. 2007;49(9):697–724. Available from: https://doi.org/10.1016/j.specom.2007.04.006
  20. Hakkinen J, Tian J. n-gram and decision tree based language identification for written words. IEEE Workshop on Automatic Speech Recognition and Understanding, 2001. ASRU '01.. 2001;9:335–338. Available from: https://doi.org/10.1109/ASRU.2001.1034655
  21. Tian J, Suontausta J. Scalable neural network based language identification from written text. 2003 IEEE International Conference on Acoustics, Speech, and Signal Processing, 2003. Proceedings. (ICASSP '03).. 2003;1:1–48. Available from: https://doi.org/10.1109/ICASSP.2003.1198713
  22. Kruengkrai C, Srichaivattana P, Sornlertlamvanich V, Isahara H. Language identification based on string kernels. IEEE International Symposium on Communications and Information Technology, 2005. ISCIT 2005.. 2005;2:926–929. Available from: https://doi.org/10.1109/ISCIT.2005.1567018
  23. Murthy KN, Kumar GB. Language identification from small text samples*. Journal of Quantitative Linguistics. 2006;13(1):57–80. Available from: https://doi.org/10.1080/09296170500500694
  24. Bhargava A, Kondrak G. Language identification of names with SVMs. Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. 2010;p. 693–696. Available from: https://aclanthology.org/N10-1102.pdf
  25. Ng CCC, Selamat A. Improved Letter Weighting Feature Selection on Arabic Script Language Identification. 2009 First Asian Conference on Intelligent Information and Database Systems. 2009;p. 150–154. Available from: https://doi.org/10.1109/ACIIDS.2009.33
  26. Amine A, Elberrichi Z, Simonet M. Automatic Language Identification: An Alternative Unsupervised Approach Using a New Hybrid Algorithm. International Journal Computer Science Applications. 2010;7:94–107. Available from: https://www.researchgate.net/publication/42387505


© 2023 Arulprakash et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.