• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 5, Pages: 216-220

Original Article

The Evaluation of the Rotating Metrics with a ̸= 0 from the Mass Function ˆM (u; r) with the reference to the Theory of General Relativity

Received Date:21 August 2021, Accepted Date:21 January 2022, Published Date:16 February 2022

Abstract

Objectives: With the reference to the Einstein’s theory of general relativity (1915), the evaluation of the rotating metrics such as Newman – Penrose Spin – Coefficients or NP Spin – Coefficients, the Ricci Scalars, the Weyl Scalars are designed with a ̸=0from the mass function or metric function ˆM (u; r). Methods: The methods / analysis adapted are the theoretical and mathematical analysis on the Einstein’s theory of general relativity. Findings: The Newman – Penrose Spin Coefficients (NP Spin – Coefficients), the Ricci Scalars, and the Weyl Scalars for the rotating metrics ˆM(u; r) with a ̸= 0 has been evaluated. Given by Wang and Wu (1999), the expanded form of the mass function or metric function with a ̸=0 has been used to evaluate the rotating metrics – NP Spin – Coefficients, the Ricci Scalars and the Weyl Scalars for a ̸= 0. The outcome is that the evaluation of rotating metrics with a ̸= 0 i.e. all the Newman – Penrose Spin Coefficients (NP Spin – Coefficients), the Ricci Scalars and the Weyl Scalars greatly simplifies the analysis of the theory of general relativity. Novelty: From the expended form of the mass function or metric function ˆM(u; r) with a ̸= 0 given by Wang and Wu (1999), all NP Spin – Coefficients, the Ricci Scalars, the Weyl Scalars has been derived for the option a ̸= 0. This paper evaluates the rotating metrics with all NP Spin – Coefficients, the Ricci Scalars and the Weyl Scalars with which greatly simplifies the analysis of the theory of general relativity. Also it is new way of formulation of the theory of general relativity with a ̸= 0.

Keywords: The Einstein’s theory of general relativity; The mass function or metric function; The Newman – Penrose Spin - Coefficients (NP Spin – Coefficients); The Ricci Scalars; The Weyl Scalars.

References

  1. Bousso R. The cosmological constant. General Relativity and Gravitation. 2008;40:607–637. Available from: https://dx.doi.org/10.1007/s10714-007-0557-5
  2. Ibohal N. Rotating metrics admitting non-perfect fluids. General Relativity and Gravitation. 2005;37(1):19–51. Available from: https://dx.doi.org/10.1007/s10714-005-0002-6
  3. Ibohal N, Ishwarchandra N, Singh KY. Non-vacuum conformally flat space-times: dark energy. Astrophysics and Space Science. 2011;335(2):581–591. Available from: https://dx.doi.org/10.1007/s10509-011-0767-x
  4. Ibohal N. Non – stationary de Sitter cosmological models. International Journal of Modern Physics D. 2009;18(05):853–863. Available from: https://dx.doi.org/10.1142/s0218271809014807
  5. Ibohal N, Dorendro L. Non – stationary rotating black holes: Entropy and Hawking’s radiation. International Journal of Modern Physics D. 2005;14(08):1373–1412. Available from: https://dx.doi.org/10.1142/s0218271805007127
  6. Ibohal N. On the variable – charged black holes embedded into de Sitter space: Hawking’s radiation. International Journal of Modern Physics D. 2005;14(06):973–994. Available from: https://dx.doi.org/10.1142/s0218271805007188
  7. Ovalle J, Contreras E, Stuchlik Z. Kerr–de Sitter black hole revisited. Physical Review D. 2021;103(8):84016. Available from: https://dx.doi.org/10.1103/physrevd.103.084016
  8. Jeevitha TU, Das S. A physical interpretation of the Newman Penrose formalism and its application to Bertrand Spacetime II. Journal of Physics: Conference Series. 2021;1849(1):012022. Available from: https://dx.doi.org/10.1088/1742-6596/1849/1/012022
  9. Debnath P, , Ishwarchandra N. The Rotating Metrics with the Mass Function ˆM(u; r) in reference to the Theory of General Relativity. Indian Journal of Science and Technology. 2021;14(15):1184–1188. Available from: https://dx.doi.org/10.17485/ijst/v14i15.307
  10. Dariescu C, Dariescu MA, Stelea C. Dirac Equation on the Kerr–Newman Spacetime and Heun Functions. Advances in High Energy Physics. 2021;2021:1–10. Available from: https://dx.doi.org/10.1155/2021/5512735
  11. Arbey A, Auffinger J, Geiller M, Livine ER, Sartini F. Hawking radiation by spherically-symmetric static black holes for all spins: Teukolsky equations and potentials. Physical Review D. 2021;103(10):104010. Available from: https://dx.doi.org/10.1103/physrevd.103.104010
  12. Loutrel N, Ripley JL, Giorgi E, Pretorius F. Second-order perturbations of Kerr black holes: Formalism and reconstruction of the first-order metric. Physical Review D. 2021;103(10). Available from: https://dx.doi.org/10.1103/physrevd.103.104017
  13. Iozzo DA , Boyle M, Deppe N, Moxon J, Scheel MA, Kidder LE, et al. Extending gravitational wave extraction using Weyl characteristic fields. Physical Review D. 2021;103(2). Available from: https://dx.doi.org/10.1103/physrevd.103.024039
  14. Chou YC. Extension Rules of Newman–Janis Algorithm for Rotation Metrics in General Relativity. Physical Science International Journal. 2020;p. 1–14. Available from: https://dx.doi.org/10.9734/psij/2020/v24i630194

Copyright

© 2022 Debnath & Ishwarchandra. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.