• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 1, Pages: 86-100

Original Article

A comprehensive review of Millimeter wave based radio over fiber for 5G front haul transmissions

Received Date:06 December 2021, Accepted Date:30 December 2021, Published Date:13 January 2021


Objectives: To find out how fiber distribution system could be utilized for 5G based futuristic higher capacity and lower latency front haul transmission system. Findings: Integrating the transmission of Millimeter wave (Mm wave) signals over the Radio over Fiber (RoF) system i.e. Mm-RoF can be seen as a promising candidate that would satisfy the requirement imposed by 5G wireless system. Further, optical generation of Mm wave signals is a major concern that needs to be taken care of and some appropriate hybrid photonic generation methods should be employed for Mm wave signal distribution over the RoF system that incur lower installation cost and higher transmission performance. Applications: This will enrich the researchers with valuable content on single platform and motivate them to undertake the research work towards the advancement in the photonic generation of Mm wave signals over the RoF network for 5G applications with reduced system cost and complexity.

Keywords: Radio over Fiber; Mm-wave technology; 5G networks; optical signal generation; Mm wave based RoF etc


  1. Sung M, Kim J, Kim ES, Cho SH, Won YJ, Lim BC, et al. RoF based radio access network for 5G mobile communication system in 28 GHz millimeter wave. IEEE Journal of Lightwave Technology. 2020;38(2):1–11. Available from: https://doi.org/10.1109/JLT.2019.2942636
  2. Wang CX, Haider F, Gao X, You XH, Yang Y, Yuan D, et al. Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine. 2014;52(2):122–130. Available from: https://dx.doi.org/10.1109/mcom.2014.6736752
  3. Baldemair R, Dahlman E, Fodor G, Mildh G, Parkvall S, Selen Y, et al. Evolving wireless communications: Addressing the challenges and expectations of the future. IEEE Vehicular Technology Magazine. 2013;8(1):24–30. Available from: https://dx.doi.org/10.1109/mvt.2012.2234051
  4. Keshavarz SH, Hosseini H, Abiri K, Jamshidi D, Plettemeir. Bias free silicon based optical single sideband modulator without 2nd order sideband. IEEE Photonics Journal. 2020;46(2):1–13. Available from: https://doi.org/10.1109/JPHOT.2020.3006628
  5. Kong M, Zhou W, Ding J, Li W, Yu J. Simultaneous generation of wired and wireless signals using a DP-MZM in a RoF system. IEEE Photonics Technology Letters. 2020;32(15):905–908. Available from: https://dx.doi.org/10.1109/lpt.2020.3004381
  6. Tian Y, Lee KL, Lim C, Nirmalathas A. 60 GHz Analog Radio-Over-Fiber Fronthaul Investigations. Journal of Lightwave Technology. 2017;35(19):4304–4310. Available from: https://dx.doi.org/10.1109/jlt.2017.2740436
  7. Jalal J, Ameen H. Dispersion Compensating Radio over Fiber (RoF) for 5G Radio Access Network. Zanco Journal of Pure and applied Sciences. 2018;30(2):8–16. Available from: https://doi.org/10.21271/ZJPAS.30.2.2
  8. Dar AB, Ahmad F, Jha RK. Filterless 16-Tupled Optical Millimeter-Wave Generation Using Cascaded Parallel Mach-Zehnder Modulators with Extinction Ratio Tolerance. Progress in Electromagnetic Research Letters. 2020;91(1):129–135. Available from: https://dx.doi.org/10.2528/pierl20031009
  9. Alavi SE, Soltanian MRK, Amiri IS, Khalily M, Supa’at ASM, Ahmad H. Towards 5G: A photonic based Millimeter wave signal generation for applying in 5G access fronthaul. Scientific Reports. 2016;6(1). Available from: https://dx.doi.org/10.1038/srep19891
  10. Thomas VA, El-Hajjar M, Hanzo L. Performance Improvement and Cost Reduction Techniques for Radio Over Fiber Communications. IEEE Communications Surveys & Tutorials. 2015;17(2):627–670. Available from: https://dx.doi.org/10.1109/comst.2015.2394911
  11. Nain A, Kumar S, Singla S. Impact of XPM Crosstalk on SCM-Based RoF Systems. Journal of Optical Communications. 2017;38(3):319–324. Available from: https://dx.doi.org/10.1515/joc-2016-0045
  12. Dixit A. Architectures and Algorithms for Radio-Over-Fiber Networks. Journal of Optical Communications and Networking. 2018;10(5):535. Available from: https://dx.doi.org/10.1364/jocn.10.000535
  13. Zhang Y. Development of Millimeter Wave Radio over Fiber Technology. Journal of Electronic Science and Technology. 2011;9(11):58–66. Available from: https://doi.org/10.3969/j.issn.1674-862X.2011.01.011
  14. Beas J, Castanon G, Aldaya I, Aragon-Zavala A, Campuzano G. Millimeter-Wave frequency radio over fiber systems: A survey. IEEE Communications Surveys & Tutorials. 2013;15(4):1593–1619. Available from: https://dx.doi.org/10.1109/surv.2013.013013.00135
  15. Prem A, Chakrapani A. Optical millimeter wave generation using external modulation-A review. Advances in Natural and Applied Sciences. 2017;11(1):8–12. Available from: http://www.aensiweb.com/ANAS
  16. Liu S, Peng PC, Xu M, Guidotti D, Tian T, Chang GK. A long distance Millimeter wave ROF system with a low cost directly modulated laser. IEEE Photonics Journal. 2018;30(15):1396–1399. Available from: https://doi.org/10.1109/LPT.2018.2850705
  17. Zacharias J, Krishnan A, Joy J, Elizabeth S, Narayanan V. Full duplex Radio over Fiber system using optical heterodyning and self homodyning. IEEE International Conference on Trends in Electronics and Informatics. 2017;p. 378–380. Available from: https://doi.org/10.1109/ICOEI.2017.8300953
  18. Thomas VA, El-Hajjar M, Hanzo L. Millimeter-Wave Radio Over Fiber Optical Upconversion Techniques Relying on Link Nonlinearity. IEEE Communications Surveys & Tutorials. 2016;18(1):29–53. Available from: https://dx.doi.org/10.1109/comst.2015.2409154
  19. Prem PKA, Chakrapani A. A Novel Scheme for Optical Millimeter Wave Generation Using LiNbO3 Mach–Zehnder Modulator Without Amplifier. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences. 2019;89(4):699–704. Available from: https://dx.doi.org/10.1007/s40010-018-0532-4
  20. O'Reilly JJ, Lane PM, Heidemann R, Hofstetter R. Optical generation of very narrow linewidth millimetre wave signals. Electronics Letters. 1992;28(25):2309–2311. Available from: https://dx.doi.org/10.1049/el:19921486
  21. Smith GH, Novak D, Ahmed Z. Overcoming chromatic-dispersion effects in fiber-wireless systems incorporating external modulators. IEEE Transactions on Microwave Theory and Techniques. 1997;45(8):1410–1415. Available from: https://dx.doi.org/10.1109/22.618444
  22. Qi G, Yao J, Seregelyi J, Paquet S, Belisle C. Optical generation and distribution of continuously tunable millimeter-wave signals using an optical phase modulator. Journal of Lightwave Technology. 2005;23(9):2687–2695. Available from: https://dx.doi.org/10.1109/jlt.2005.854067
  23. Teng Y, Chen Y, Zhang B, Zhang P, Lu L, Zhu Y, et al. Photonic low phase-noise frequency-doubling signal generation based on optoelectronic oscillator. Optik. 2016;127(16):6434–6438. Available from: https://dx.doi.org/10.1016/j.ijleo.2016.04.095
  24. Li X, Xiao J, Xu Y, Chen L, Yu J. Frequency-Doubling Photonic Vector Millimeter-Wave Signal Generation From One DML. IEEE Photonics Journal. 2015;7(6):1–7. doi: 10.1109/jphot.2015.2496859
  25. Liu J, Chien HC, Fan SH, Chen B, Yu J, He S, et al. Efficient Optical Millimeter-Wave Generation Using a Frequency-Tripling Fabry–Pérot Laser With Sideband Injection and Synchronization. IEEE Photonics Technology Letters. 2011;23(18):1325–1327. Available from: https://dx.doi.org/10.1109/lpt.2011.2159834
  26. Zhao S, Zhu Z, Li Y, Chu X, Li X. Optical millimeter-wave generation with modified frequency quadrupling scheme. Optical Engineering. 2013;52(11):116109. Available from: https://dx.doi.org/10.1117/1.oe.52.11.116109
  27. Li X, Yu J, Chang GK. Frequency quadrupling Mm wave signal generation by only one single drive MZM. IEEE Photonics Technology Letters. 2016;28(5):1302–1305. Available from: https://doi.org/10.1109/LPT.2016.2541663
  28. Wang WT, Wang Q, Sun WH, Wang WY, Tong YW, J, et al. Frequency quadrupling microwave signal generation based on Brillouin assisted optical notch filter. International Symposium on Next Generation Electronics, Taiwan. 2015;1(2). Available from: https://doi.org/10.1109/ISNE.2015.7132000
  29. Lin CT, Shih PT, Chen JJ, Xue WQ, Peng PC, Chi S. Optical Millimeter-Wave Signal Generation Using Frequency Quadrupling Technique and No Optical Filtering. IEEE Photonics Technology Letters. 2008;20(12):1027–1029. Available from: https://dx.doi.org/10.1109/lpt.2008.923739
  30. Zhang L, Fan SH, Liu C, Zhu M, Xia F, Hu Z, et al. A cost effective multi-gigabit 60 GHz wireless over optical fiber access system based on a novel frequency quintupling technique. IEEE Photonics Society Summer Topical Meeting Series, USA. 2012;p. 143–144. Available from: https://doi.org/10.1109/PHOSST.2012.6280789
  31. Han Y, Luo Z, Zheng Z, Qin X. Optical millimeter wave generation with tunable frequency multiplication factor for radio over fiber systems. 14th IEEE International Conference on Optical Communications. 2015;1(3). Available from: https://doi.org/10.1109/ICOCN.2015.7203714
  32. Jia Z, Yu J, Hsueh YT, Chowdhury A, Chien HC, Buck JA, et al. Multiband Signal Generation and Dispersion-Tolerant Transmission Based on Photonic Frequency Tripling Technology for 60-GHz Radio-Over-Fiber Systems. IEEE Photonics Technology Letters. 2008;20(17):1470–1472. Available from: https://dx.doi.org/10.1109/lpt.2008.927901
  33. Jia Z, Yu J, Ellinas G, Chang GK. Key Enabling Technologies for Optical–Wireless Networks: Optical Millimeter-Wave Generation, Wavelength Reuse, and Architecture. Journal of Lightwave Technology. 2007;25(11):3452–3471. Available from: https://dx.doi.org/10.1109/jlt.2007.909201
  34. Zhu Z, Zhao S, Li Y, Chu X, Wang X, Zhao G. A radio over fiber system with frequency 12 tupling optical millimeter wave signal generation to overcome chromatic dispersion. IEEE Journal of Quantum Electronics. 2013;49(11):919–922. Available from: https://doi.org/10.1109/JQE.2013.2281664
  35. Medeiros MCR, Avo R, Laurencio P, Lorreia NS, Barradas A, Silva HJA, et al. Radio over fiber network architecture employing reflective semiconductor optical amplifiers. In: IEEE Proceedings of ICTON Mediterranean Winter Conference. (pp. 1-6) 2007.
  36. Al-Shareefi NA, Hassan SIS, Malek MFBA, Ngah R, Aljunid SA, Fayadh RA, et al. Development of a new approach for high quality quadrupling frequency optical millimeter-wave signal generation without optical filter. Progress In Electromagnetics Research. 2013;134:189–208. Available from: https://dx.doi.org/10.2528/pier12100411
  37. Thomas VA, Ghafoor S, El-Hajjar M, Hanzo L. A Full-Duplex Diversity-Assisted Hybrid Analogue/Digitized Radio Over Fibre for Optical/Wireless Integration. IEEE Communications Letters. 2013;17(2):409–412. Available from: https://dx.doi.org/10.1109/lcomm.2012.122012.120975
  38. Chowdhury A, Chien HC, Hsueh YT, Chang GK. Advanced System Technologies and Field Demonstration for In-Building Optical-Wireless Network With Integrated Broadband Services. Journal of Lightwave Technology. 2009;27(12):1920–1927. Available from: https://dx.doi.org/10.1109/jlt.2009.2022419
  39. Olmos JJV, Kuri T, Kitayama Ki. Dynamic Reconfigurable WDM 60-GHz Millimeter-Waveband Radio-Over-Fiber Access Network: Architectural Considerations and Experiment. Journal of Lightwave Technology. 2007;25(11):3374–3380. Available from: https://dx.doi.org/10.1109/jlt.2007.906806
  40. Takahashi Y. A single light source configuration for full duplex 60 GHz band radio on fiber system. IEEE transactions on microwave theory and techniques. 2003;51(2):431–439. Available from: https://doi.org/10.1109/TMTT.2002.807837
  41. Chen L, Wen H, Wen S. A Radio-Over-Fiber System With a Novel Scheme for Millimeter-Wave Generation and Wavelength Reuse for Up-Link Connection. IEEE Photonics Technology Letters. 2006;18(19):2056–2058. Available from: https://dx.doi.org/10.1109/lpt.2006.883293
  42. Kamisaka T, Kuri T, Kitayama K. Simultaneous modulation and fiber-optic transmission of 10-Gb/s baseband and 60-GHz-band radio signals on a single wavelength. IEEE Transactions on Microwave Theory and Techniques. 2001;49(10):2013–2017. Available from: https://dx.doi.org/10.1109/22.954823
  43. Kim H, Ji HC, Chung YC. Full-duplex radio-over-fiber system using phase-modulated downlink and intensity-modulated uplink. IEEE Photonics Technology Letters. 2009;21(1):9–11. Available from: https//doi.org/10.1109/LPT.2008.2007969
  44. Nakasyotani T, Toda H, Kuri T, Kitayama K. Wavelength-division-multiplexed Millimeter-waveband radio-on-fiber system using a supercontinuum light source. Journal of Lightwave Technology. 2006;24(1):404–410. Available from: https://dx.doi.org/10.1109/jlt.2005.859854


© 2021 Asha & Dahiya.This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.