• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 12, Pages: 527-534

Original Article

A Hybrid Machine Learning Model to Predict Heart Disease Accurately

Received Date:13 January 2022, Accepted Date:19 February 2022, Published Date:25 March 2022


Objective: To propose the most effective machine learning algorithm for predicting cardiac problems. Methods: The dataset used for this study is “heart” which was taken from www.kaggle.com. The heart dataset contains 13 features and a target variable. It is divided into 70 percent training set and 30 percent testing set. K-Fold cross-validation is used in this study for model evaluation and model selection. The K value chosen is ten. A Hybrid Ensemble machine learning model is built using a heterogeneous collection of weak learners in this work. To construct a hybrid ensemble model, weak learners such as “Logistic Regression”, “Decision Tree”, “Support Vector Machine”, “KNearest Neighbor”, and “Naive Bayes” are used. Normally, in an ensemble model, a homogeneous group of weak learners is utilized, however in this study, a heterogeneous group of weak learners is used. The parameter used in this study is accuracy. Accuracy of all the weak learners is found and compared with the hybrid ensemble model. Findings: Weak machine learning models are combined to create an ensemble model. The ”Hybrid Ensemble model” has a 98 percent accuracy rate and outperforms all weak learners such as “Logistic Regression”, “Decision Tree”, “Support Vector Machine”, “K-Nearest Neighbor”, and “Naive Bayes”. Novelty and applications : For the prediction of heart problems, the hybrid ensemble model is recommended since it extracts more accurate and valuable data from huge amounts of data, making prediction easier for physicians.

Keywords: Machine Learning; Ensemble Model; Weak Learners; Homogeneous; Heterogeneous


  1. Lin CH, Yang PK, Lin YC, Fu PK. On Machine Learning Models for Heart Disease Diagnosis. Second IEEE Eurasia Conference on Biomedical Engineering, Healthcare and Sustainability. 2020. doi: 10.1109/ECBIOS50299.2020.9203614
  2. Zeinulla E, Bekbayeva K, Yazici A. Effective diagnosis of heart disease imposed by incomplete data based on fuzzy random forest. 2020 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). 2020;p. 2020. doi: 10.1109/FUZZ48607.2020.9177531
  3. Kasabe R, Narang G. Heart Disease Prediction using Machine Learning. International Journal of Engineering Research & Technology (IJERT). 2020. Available from: http://dx.doi.org/10.17577/IJERTV9IS080128
  4. Saw M, Saxena T, Kaithwas S, Yadav R, Lal N. Estimation of Prediction for Getting Heart Disease Using Logistic Regression Model of Machine Learning. International Conference on Computer Communication and Informatics (ICCCI). 2020. doi: 10.1109/ICCCI48352.2020.9104210
  5. Basha N, Kumar PSA, Krishna CG, Venkatesh P. Early Detection of Heart Syndrome Using Machine Learning Technique. 4th International Conference on Electrical, Electronics, Communication, Computer Technologies and Optimization Techniques (ICEECCOT). 2019. doi: 10.1109/ICEECCOT46775.2019.9114651
  6. Katarya R, Srinivas P. Predicting Heart Disease at Early Stages using Machine Learning: A Survey. International Conference on Electronics and Sustainable Communication Systems (ICESC). 2020. doi: 10.1109/ICESC48915.2020.9155586
  7. Miao L, Guo X, Abbas HT, Qaraqe KA, Abbasi QH. Using Machine Learning to Predict the Future Development of Disease. 2020 International Conference on UK-China Emerging Technologies (UCET). 2020. doi: 10.1109/UCET51115.2020.9205373
  8. Halima EL, Hamdaoui, Saïd B, Houda NE, Mustapha C, AM. A Clinical support System for Prediction of Heart Disease using Machine Learning Techniques. 5th International Conference on Advanced Technologies for Signal and Image Processing. 2020. doi: 10.1109/ATSIP49331.2020.9231760
  9. Ananey-Obiri D, Sarku E. Predicting the Presence of Heart Diseases using Comparative Data Mining and Machine Learning Algorithms. International Journal of Computer Applications. 2020;176(11):17–21. Available from: https://dx.doi.org/10.5120/ijca2020920034
  10. Bharti R, Khamparia A, Shabaz M, Dhiman G, Pande S, Singh P. Prediction of Heart Disease Using a Combination of Machine Learning and Deep Learning. Computational Intelligence and Neuroscience. 2021;2021:1–11. Available from: https://dx.doi.org/10.1155/2021/8387680
  11. Srivenkatesh M. Prediction of Cardiovascular Disease using Machine Learning Algorithms. International Journal of Engineering and Advanced Technology. 2020;9(3):2404–2414. doi: 10.35940/ijeat.B3986.029320
  12. Zeeshan YM. Effective Heart Disease Prediction using Machine Learning and DataMining Techniques. International Research Journal Of Engineering And Technology (IRJET). 2021;8:3539–3546. Available from: ww.irjet.net
  13. Ali A, A. Survival prediction among heart patients using machine learning techniques. Mathematical Biosciences and Engineering. 2022;19(1):134–145. doi: 10.3934/mbe.2022007
  14. Deepika D, Balaji N. Effective heart disease prediction using novel MLP-EBMDA approach. Biomedical Signal Processing and Control. 2022;72:103318. Available from: https://dx.doi.org/10.1016/j.bspc.2021.103318
  15. Albahr A, Albahar M, Thanoon M, Binsawad M. Computational Learning Model for Prediction of Heart Disease Using Machine Learning Based on a New Regularizer. Computational Intelligence and Neuroscience. 2021;2021:1–10. Available from: https://dx.doi.org/10.1155/2021/8628335


© 2022 Subramanian & Christobel. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.