• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 31, Pages: 2550-2556

Original Article

Extraction, identification and molecular docking studies evaluation of Momordica tuberosa (Roxb) against Anopheles

Received Date:27 May 2021, Accepted Date:16 August 2021, Published Date:22 September 2021

Abstract

Objectives: This study aimed to identify phytochemicals from Momordica tuberosa (M. tuberosa) leaves and it’s in silico larvicidal potential compounds against Anopheles. Further, to analyze their inhibitory mechanisms against the Anopheles angiotensin-converting enzyme (ACE). In view of the above fact, we made an attempt to discover potential and novel natural mosquito larvicidal compounds with least impact on human health. Method: The GC-MS analysis confirmed the phytoconstituents from the methanol extracts of M. tuberosa through GC-MS and selected compounds were submitted to docking studies on Anopheles angiotensin-converting enzyme as possible targets. Findings: GC-MS analysis of the extract showed the presence of 20 compounds with Limonene dioxide, Neophytadiene and Palmitic acid as main constituents. Three Selected compounds (Limonene dioxide, Neophytadiene and palmitic acid) specifically binds the binding site of an angiotensin-converting enzyme (ACE). The binding energy Limonene dioxide (- 6 kcal/mol), Neophytadiene (- 6.5 kcal/mol), Palmitic acid (- 5.7 kcal/mol) and interaction were analyzed. The present study displays better docking binding energy in the selected compounds. The results further substantiate that the 3 compounds of the M. tuberose found to be model candidates for the design and development of potential larvicidal. Novelty: The study helps to pave the first way to develop the promising larvicidal compound from plants. This result visibly suggests that compounds (Limonene dioxide, Neophytadiene and Palmitic acid) from M. tuberosa could act as potential larvicidal agents – to control Anopheles.

Keywords: Phytochemical; Molecular docking; anangiotensinconverting enzyme (ACE); larvicidal; Chromatography

References

  1. Mohankumar TK, Shivanna KS, Achuttan VV. Screening of Methanolic Plant extracts against larvae of Aedes aegypti and Anopheles stephensi in Mysore. J. Arthropod Borne Dis. 2016;10:303–314.
  2. Javidfar M, Ahmadi S. QSAR modelling of larvicidal phytocompounds against Aedes aegypti using index of ideality of correlation. SAR and QSAR in Environmental Research. 31(10):717–739. Available from: https://doi.org/10.1080/1062936X.2020.1806922
  3. Hussein MA, Zyaan OH, Monsef AbHA, Rizk SA, Farag SM, Hafez SE, et al. Synthesis, molecular docking and insecticidal activity evaluation of chromones of date palm pits extract against Culex pipiens(Diptera: Culicidae) International Journal of Mosquito Research. 2018;5(4):22–32. Available from: http://www.dipterajournal.com/pdf/2018/vol5issue4/PartA/5-3-18-682.pdf
  4. Hasan Z’A, Williams H, Ismail NM, Othman H, Cozier GE, Acharya KR, et al. The toxicity of angiotensin converting enzyme inhibitors to larvae of the disease vectors Aedes aegypti and Anopheles gambiae . Scientific Reports. 2017;7. Available from: https://doi.org/10.1038/srep45409
  5. Gopalasatheeskumar K. An Updated Pharmacological Overview On Momordica cymbalaria (Athalakkai) Innoriginal International Journal of Sciences. 2018;5(1):28–31.
  6. Louis LL, Anna-Bella FA. Vector biology prospects in dengue research. Memorias do Instituto Oswaldo Cruz. 2012;107(8):1080–1082. Available from: https://doi.org/10.1590/S0074-02762012000800022
  7. Sheila BA, David PT, DA, Bastos S, Rosemary S. Assessment of risk of dengue and yellow fever virus transmission in three major Kenyan cities based on Stegomyia indices. Plos Neglected Tropical Diseases. 2017;11(8):1–20. Available from: https://doi.org/10.1371/journal.pntd.0005858
  8. Madani AT, Al-Mazrou YY, Al-Jeffri MH, Mishkhas AA, Al-Rabeah AM, Turkistani AM, et al. Rift valley fever epidemic in Saudi arabia: epidemiological, clinical and laboratory characteristics. Clinical Infectious Diseases. 2003;37(8):1084–1092. Available from: https://doi.org/10.1086/378747
  9. Brady OJ, Godfray HCJ, Tatem AJ, Gething PW, Cohen JM, McKenzie FE, et al. Vectorial capacity and vector control: Reconsidering sensitivity to parameters for malaria elimination. Transactions of the Royal Society of Tropical Medicine and Hygiene. 2016;110(2):107–117. Available from: https://doi.org/10.1093/trstmh/trv113
  10. AK, Saeed HS, NI, Al-KhuraijiIbrahim A, Abir AZAS, Naimah AA, et al. Larvicidal efficacy of ethanolic leaf extracts of four selected local plants from hail region, northern Saudi Arabia, against the dengue fever vector, Aedes aegypti (L.) under laboratory conditions. International Journal of Mosquito Research. 2017;4(3):81–87.
  11. Lemine AMM, Lemrabott MAO, Ebou MH, Lekweiry KM, Salem MSOA, Brahim KO, et al. Mosquitoes (Diptera: Culicidae) in Mauritania: a review of their biodiversity, distribution and medical importance. Parasites & Vectors. 2017;10(35):1–13. Available from: https://doi.org/10.1186/s13071-017-1978-y
  12. Mohammad MH, MWM, VSV, Sequeira V, shafiur MRM. Chemical composition of date pits and its potential for developing value added product a review. Polish Journal of Food Nutrition Science. 2014;64(4):215–226.
  13. Mohamed HS, Fahmy MM, Attia MM, Khateeb RME, Shalaby HA, Massoud AM, et al. The insecticidal activity of two medicinal plants (Commiphora molmol) and (Balanites aegyptiaca) against the blowfly Lucilia sericata (Diptera: Calliphoridae) International Journal of Advanced Research Biological Science. 2016;3(3):144–158. Available from: https://ijarbs.com/pdfcopy/mar2016/ijarbs18.pdf
  14. Cashman JS, Cozier GE, Harrison C, Isaac RE, Acharya KR. rystal structures of angiotensin-converting enzyme from Anopheles gambiae in its native form and with a bound inhibitor. The Biochemical journal. 476(22):3505–3520. Available from: https://doi.org/10.1042/BCJ20190635
  15. Dallakyan S, Olson AJ. Small-molecule library screening bydocking with PyRx. Methods in Molecular Biology. 2015;1263:243–250. Available from: https://doi.org/10.1007/978-1-4939-2269-7_19
  16. Nwakulite A, Obeagu EI, Nwanjo HU, Nwosu DC, Nnatuanya IN, Eze R, et al. Studies on Molecular Docking of Moringa Oleifera Leaf Phytochemical Constituents on Alpha Glucosidase, Alpha Amylase and Dipeptidyl Peptidase. Journal of Pharmaceutical Research International. 2021;p. 239–284. Available from: 10.9734/JPRI/2021/v33i28A31527
  17. Saber FR, Ashour RM, El-Halawany AM, Mahomoodally MF, Gunes AK, Zengin G, et al. Phytochemical profile, enzyme inhibition activity and molecular docking analysis of Feijoa sellowiana O. Berg. Journal of Enzyme Inhibition and Medicinal Chemistry. 2021;36(1):618–644. Available from: https://doi.org/10.1080/14756366.2021.1880397

Copyright

© 2021 Mamudha & Sunilson. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.