• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 33, Pages: 1594-1604

Original Article

MHD Boundary Layer Flow Past an Exponentially Stretching Sheet with Darcy-Forchheimer Flow of Nanofluids

Received Date:18 April 2022, Accepted Date:25 July 2022, Published Date:26 August 2022


Objectives: To investigate an exponentially stretched sheet with a magnetic force to explore the Darcy-Forchheimer flow of a two-dimensional blood-based nanofluid and the effect of different relevant parameters of the fluid flow assumption for velocity and temperature profiles. Methods: Nanoparticles such as Ag, TiO2 and Fe with base fluid blood are being investigated. The governing equations of the problem, such as continuity, motion, and energy, are derived and translated into ordinary differential equations by employing appropriate optimization techniques. The bvp4c technique is used to perform numerical computations. The impacts of non-dimensional governing factors like the prandtl number (Pr), magnetic field parameter (M), Forchheimer number (Fr), porosity parameter (b ) and nanofluid volume fraction (ϕ ) are determined numerically and displayed through graphs. Tables illustrate and explain the local Nusselt number and skin friction coefficient. Findings: Velocity profile of Ag-blood, TiO2-blood and Fe-blood decreases and temperature profile increases for increasing values of Pr, b , M and Fr. For rising values of M, b , and Fr, the skin friction coefficient increases and the Nusselt number decreases, but the accelerating trend of ϕ exhibits a reversible trend. Novelty: The Darcy-Forchheimer flow of a two-dimensional blood-based nanofluid with a magnetic field is novel in the model. The (Ag-Blood, TiO2-Blood, Fe-Blood) nanofluid flow past an exponentially stretching surface is considered in the present study, while no one has considered these nanofluids for the same model.

Keywords: MHD; Bloodbased nanofluid; Nanoparticles; Exponentially stretching surface; Darcy Forchheimer flow; Blood based nanofluid


  1. Crane LJ. Flow past a stretching plate. Zeitschrift für angewandte Mathematik und Physik ZAMP. 1970;21(4):645–647. Available from: https://doi.org/10.1007/BF01587695
  2. Magyari E, Keller B. Heat and mass transfer in the boundary layers on an exponentially stretching continuous surface. Journal of Physics D: Applied Physics. 1999;32(5):577–585. Available from: https://doi.org/10.1088/0022-3727/32/5/012
  3. Wang J, Mustafa Z, Siddique I, Ajmal M, Jaradat MMM, Rehman SU, et al. Computational Analysis for Bioconvection of Microorganisms in Prandtl Nanofluid Darcy–Forchheimer Flow across an Inclined Sheet. Nanomaterials. 2022;12(11):1791. Available from: https://doi.org/10.3390/nano12111791
  4. Choi SU, Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. Argonne National Lab. (ANL). 1995.
  5. Pushpa BV, Sankar M, Mebarek-Oudina F. Buoyant Convective Flow and Heat Dissipation of Cu–H<sub>2</sub>O Nanoliquids in an Annulus Through a Thin Baffle. Journal of Nanofluids. 2021;10(2):292–304. Available from: https://doi.org/10.1166/jon.2021.1782
  6. Swain K, Mebarek-Oudina F, Abo-Dahab SM. Influence of MWCNT/Fe3O4 hybrid nanoparticles on an exponentially porous shrinking sheet with chemical reaction and slip boundary conditions. Journal of Thermal Analysis and Calorimetry. 2022;147(2):1561–1570. Available from: https://doi.org/10.1007/s10973-020-10432-4
  7. Pattnaik PK, Mishra S, Baag S. Heat transfer analysis on Engine oil-based hybrid nanofluid past an exponentially stretching permeable surface with Cu/Al<sub>2</sub>O<sub>3</sub> additives. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomaterials, Nanoengineering and Nanosystems. 2022;p. 239779142210938. Available from: https://doi.org/10.1177/23977914221093846
  8. Sharma D, Sood S. Effect of inclined magnetic field on flow of Williamson nanofluid over an exponentially stretching surface in Darcy‐Forchheimer model. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 2022;102(6). Available from: https://doi.org/10.1002/zamm.202100425
  9. Tiwari RK, Das MK. Heat transfer augmentation in a two-sided lid-driven differentially heated square cavity utilizing nanofluids. International Journal of Heat and Mass Transfer. 2007;50(9-10):2002–2018. Available from: https://doi.org/10.1016/j.ijheatmasstransfer.2006.09.034
  10. Dawadi S, Katuwal S, Gupta A, Lamichhane U, Thapa R, Jaisi S, et al. Current Research on Silver Nanoparticles: Synthesis, Characterization, and Applications. Journal of Nanomaterials. 2021;2021:1–23. Available from: https://doi.org/10.1155/2021/6687290
  11. Schneider M, Martín MG, Otarola MJ, Vakarelska J, Simeonov E, Lassalle V, et al. Biomedical Applications of Iron Oxide Nanoparticles: Current Insights Progress and Perspectives. Pharmaceutics. 2022;14(1). Available from: https://doi.org/10.3390/pharmaceutics14010204
  12. Brinkman HC. The viscosity of concentrated suspensions and solutions. The Journal of chemical physics. 1952;20. Available from: https://doi.org/10.1063/1.1700493
  13. Khanafer K, Vafai K, Lightstone M. Buoyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids. International journal of heat and mass transfer. 2003;46:3639–53. Available from: https://doi.org/10.1016/S0017-9310(03)00156-X
  14. Kierzenka J, Shampine LF. A BVP solver based on residual control and the Maltab PSE. ACM Transactions on Mathematical Software. 2001;27(3):299–316. Available from: https://doi.org/10.1145/502800.502801
  15. Loganathan P, Vimala C. MHD Boundary Layer Flow of a Nanofluid Over an Exponentially Stretching Sheet in the Presence of Radiation. Heat Transfer-Asian Research. 2014;43(4):321–331. Available from: https://doi.org/10.1002/htj.21077
  16. Srinivas S, Vijayalakshmi A, Reddy AS. Flow and Heat Transfer of Gold-Blood Nanofluid in a Porous Channel with Moving/Stationary Walls. Journal of Mechanics. 2017;33(3):395–404. Available from: https://doi.org/10.1017/jmech.2016.102
  17. Mushtaq A, Mustafa M, Hayat T, Alsaedi A. Numerical study for rotating flow of nanofluids caused by an exponentially stretching sheet. Advanced Powder Technology. 2016;27(5):2223–2231. Available from: https://doi.org/10.1016/j.apt.2016.08.007
  18. Chandel S, Sood S. Unsteady flow of Williamson fluid under the impact of prescribed surface temperature (PST) and prescribed heat flux (PHF) heating conditions over a stretching surface in a porous enclosure. ZAMM - Journal of Applied Mathematics and Mechanics / Zeitschrift für Angewandte Mathematik und Mechanik. 2022;102(3). Available from: https://doi.org/10.1002/zamm.202100128


© 2022 Sharma. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.