• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 4, Pages: 158-165

Original Article

Potato Plant Leaf Diseases Identification Using Transfer Learning

Received Date:20 October 2021, Accepted Date:05 January 2022, Published Date:05 February 2022


Background/Objectives: Agriculture is a major food source for Ethiopian population. Plant diseases contribute a great production loss, which can be addressed with continuous monitoring. Early plant disease identification using computer vision and Artificial Intelligence (AI) helps the farmers to take preventive course of action to increase production quality. Manual plant disease identification is strenuous and error-prone. Methods: In this study, we present a convolutional neural network architecture inception-v3 model to detect potato leaf diseases using a deep learning-based transfer learning technique. We used separable convolution in the inception block that can minimize the number of parameters by an outsized margin and to utilize resource efficiently. The inception-V3 model have a higher training accuracy and needs less training time than the main CNN architecture, as the used parameters are fewer. Findings: In this study, there is an improvement on the little noisy on sample images which leads to misidentification of diseases. In our experiment, we have used an RGB color channel image dataset to train model, which yields an overall accuracy performance of 98.7% on the heldout test set. Novelty: In order to identify potato leave diseases, we conducted transfer learning for high performance classification with pixel-wise operation to enhance the number of leaf images. A model based on inception-v3 transfer learning approach is presented in this study for disease identification of potato leave images, thus provide an effective computer-aided recognition model for potato disease classification in the absence of large data.

Keywords: Artificial intelligence; convolutional neural network; deep learning; leaf disease identification; Softmax


  1. Johnson J, Sharma G, Srinivasan S, Masakapalli SK, Sharma S, Sharma J, et al. Enhanced Field-Based Detection of Potato Blight in Complex Backgrounds Using Deep Learning. Plant Phenomics. 2021;2021:1–13. Available from: https://dx.doi.org/10.34133/2021/9835724
  2. Bhagwat R, Dandawate Y. A Review on Advances in Automated Plant Disease Detection. International Journal of Engineering and Technology Innovation. 2021;11(4):251–264. Available from: https://dx.doi.org/10.46604/ijeti.2021.8244
  3. Arivazhagan S, Ligi SV. Mango Leaf Diseases Identification Using Convolutional Neural Network. Mango Leaf Diseases Identification Using Convolutional Neural Network. 2018;120:11067–11079. Available from: https://www.acadpubl.eu/hub/2018-120-6/8/731.pdf
  4. Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. Rethinking the Inception Architecture for Computer Vision. 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016;2016:2818–2826. doi: 10.1109/CVPR.2016.308
  5. Indolia S, Goswami AK, Mishra SP, Asopa P. Conceptual Understanding of Convolutional Neural Network- A Deep Learning Approach. Procedia Computer Science. 2018;132:679–688. doi: 10.1016/j.procs.2018.05.069
  6. Mokhtar U, Bendary NE, Hassenian AE, Emary E, Mahmoud MA, Hefny H, et al. SVM-Based Detection of Tomato Leaves Diseases. Advances in Intelligent Systems and Computing. 2015;323:641–652. doi: 10.1007/978-3-319-11310-4_55
  7. Mohanty SP, Hughes DP, Salathé M. Using Deep Learning for Image-Based Plant Disease Detection. Frontiers in Plant Science. 2016;7:1419. Available from: https://dx.doi.org/10.3389/fpls.2016.01419
  8. Zhang Y, Gao J, Zhou H. Breeds Classification with Deep Convolutional Neural Network. Proceedings of the 2020 12th International Conference on Machine Learning and Computing. 2020;p. 145–151. doi: 10.1145/3383972.3383975.
  9. Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions. 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2015.
  10. Selvaraj MG, Vergara A, Ruiz H, Safari N, Elayabalan S, Ocimati W, et al. AI-powered banana diseases and pest detection. Plant Methods. 2019;15(1):1–11. Available from: https://dx.doi.org/10.1186/s13007-019-0475-z
  11. Sun X, Mu S, Xu Y, Cao Z, Su T. Image Recognition of Tea Leaf Diseases Based on Convolutional Neural Network. 2018 International Conference on Security, Pattern Analysis, and Cybernetics (SPAC). 2018;p. 304–309. doi: 10.1109/SPAC46244.2018.8965555
  12. Tiwari D, Ashish M, Gangwar N, Sharma A, Patel S, Bhardwaj S. Potato Leaf Diseases Detection Using Deep Learning. 2020 4th International Conference on Intelligent Computing and Control Systems (ICICCS). 2020;p. 461–466. doi: 10.1109/ICICCS48265.2020.9121067
  13. Kumar G, Bhatia PK. A Detailed Review of Feature Extraction in Image Processing Systems. 2014 Fourth International Conference on Advanced Computing & Communication Technologies. 2014;p. 5–12. doi: 10.1109/ACCT.2014.74
  14. Rashid J, Khan I, Ali G, Almotiri SH, AlGhamdi MA, Masood K. Multi-Level Deep Learning Model for Potato Leaf Disease Recognition. Electronics. 2021;10(17):2064. Available from: https://dx.doi.org/10.3390/electronics10172064
  15. Hassan SM, Maji AK, Jasiński M, Leonowicz Z, EJ. Identification of Plant-Leaf Diseases Using CNN and Transfer-Learning Approach. Identification of Plant-Leaf Diseases Using CNN and. 2021;10(12):1388. Available from: https://doi.org/10.3390/electronics10121388


© 2022 Gardie et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.