• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2020, Volume: 13, Issue: 29, Pages: 2947-2955

Original Article

Predicting students academic performance from wellness status markers using machine learning techniques

Received Date:25 June 2020, Accepted Date:29 July 2020, Published Date:11 August 2020


Background: A high level of wellness is vital to produce a well-balanced and competent graduate. Despite the importance of wellness to the attainment of high productivity, limited attention is directed towards predicting the academic performance of students with regards to wellness markers. This study aims to ascertain the association between wellness and academic achievement of undergraduate students. Methods: A total of 250 undergraduate students drawn from various faculties in one of the public universities in Malaysia participated in the study. The wellness Lifestyle inventory which evaluates an initial rating of a person’s present attempt to remain healthy and assessed nine major areas namely; health-related fitness, nutrition, avoiding chemical dependency, stress management, personal hygiene and health, disease prevention, emotional well-being, personal safety and environmental health protection was used as a tool for determining the wellness status of the students whilst their CGPA was utilized as a measure for their academic achievement. K-means clustering analysis was used to group the students into high grades students (HGS) and low grades students (LGS) through their CGPA. A Logistic Regression Model (LR) is developed to classify the students based on their wellness status markers. Findings: An excellent classification accuracy of 99 to 100 % was obtained from the LR model for both training and testing, respectively. Moreover, analysis of variance demonstrated that the HGS and LGS differ in their effort to stay healthy with respect to certain markers p <0.05. Applications: To ensure better academic grades, some wellness status elements need to be accentuated amongst undergraduate students.

Keywords: Wellness status; undergraduate student; academic performance;K-means clustering; logistic regression


  1. Olufemi AJ. Assessment of Wellness Status Among a Multi-Ethnic Based Adult Sample. International Journal of Physical Education, Fitness and Sports. 2016;5(2):05–08. Available from: https://dx.doi.org/10.26524/1622
  2. Santana CCA, Hill JO, Azevedo LB, Gunnarsdottir T, Prado WL. The association between obesity and academic performance in youth: a systematic review. Obesity Reviews. 2017;18(10):1191–1199. Available from: https://dx.doi.org/10.1111/obr.12582
  3. Musa RM, Abdullah MR, Maliki ABHM, Kosni NA, Haque M. The Application of Principal Components Analysis to Recognize Essential Physical Fitness Components among Youth Development Archers of Terengganu, Malaysia. Indian Journal of Science and Technology. 2016;9(44). Available from: https://dx.doi.org/10.17485/ijst/2016/v9i44/97045
  4. Musa RM, Majeed APPA, Abdullah MR, Nasir AFA, Hassan MHA, Razman MAM. Technical and tactical performance indicators discriminating winning and losing team in elite Asian beach soccer tournament. PLOS ONE. 2019;14(6):e0219138. Available from: https://dx.doi.org/10.1371/journal.pone.0219138
  5. Anusha M, Karthik K, Rani P, Srikanth P, V. Prediction of student performance using machine learning. International Journal of Engineering and Advanced Technology. 2019;8(6):247–255. Available from: https://doi.org/10.35940/ijeat.E7520.088619
  6. Kardan AA, Sadeghi H, Ghidary SS, Sani MRF. Prediction of student course selection in online higher education institutes using neural network. Computers & Education. 2013;65:1–11. Available from: https://dx.doi.org/10.1016/j.compedu.2013.01.015
  7. Amrieh EA, Hamtini T, Aljarah I. Mining Educational Data to Predict Student’s academic Performance using Ensemble Methods. International Journal of Database Theory and Application. 2016;9(8):119–136. Available from: https://dx.doi.org/10.14257/ijdta.2016.9.8.13
  8. Arsad PM, Buniyamin N, Manan J. Prediction of engineering students’ academic performance using artificial neural network and linear regression: A comparison. 2013 IEEE 5th International Conference on Engineering Education: Aligning Engineering Education with Industrial Needs for Nation Development, ICEED 2013. 2014:43–48. Available from: https://doi.org/10.1109/ICEED.2013.6908300
  9. Oladokun V, Adebanjo A, Charles-Owaba O. Predicting students academic performance using artificial neural network: a case study of an engineering course. The Pacific Journal of Science and Technology. 2008;9(1):72–79.
  10. Romero C, López MI, Luna JM, Ventura S. Predicting students' final performance from participation in on-line discussion forums. Computers & Education. 2013;68:458–472. Available from: https://dx.doi.org/10.1016/j.compedu.2013.06.009
  11. R. RM, N. A, M. MABH, M. MR, A. KL, H. J. Unsupervised Pattern Recognition of Physical Fitness Related Performance Parameters among Terengganu Youth Female Field Hockey Players. International Journal on Advanced Science, Engineering and Information Technology. 2017;7(1):100. Available from: https://dx.doi.org/10.18517/ijaseit.7.1.1145
  12. Fitness LP, Program P. Your Complete Solution for Health. Xtemp 2014. (accessed ) Available from: https://clubsolutionsmagazine.com/2020/01/fully-integrated.Accessed28
  13. Nunnally JC. Psychometric Theory 3E. Tata McGraw-Hill Education. 1994.
  14. Cohen J, Primer P. A power primer. Psychological bulletin. 1992;112(1):155–159. Available from: http://www.ncbi.nlm.nih.gov/pubmed/19565683. Accessed September 29, 2018
  15. Taha Z, Musa RM, Majeed APPA, Alim MM, Abdullah MR. The identification of high potential archers based on fitness and motor ability variables: A Support Vector Machine approach. Human Movement Science. 2018;57(1):184–193. Available from: https://dx.doi.org/10.1016/j.humov.2017.12.008
  16. Taha Z, Musa RM, Majeed APPA, Alim MM, Abdullah MR. The identification of high potential archers based on fitness and motor ability variables: A Support Vector Machine approach. Human Movement Science. 2018;57:184–193. Available from: https://dx.doi.org/10.1016/j.humov.2017.12.008
  17. Rastrollo-Guerrero JL, Gómez-Pulido JA, Durán-Domínguez A. Analyzing and Predicting Students’ Performance by Means of Machine Learning: A Review. Applied Sciences. 2020;10(3):1042. Available from: https://dx.doi.org/10.3390/app10031042
  18. Fard MM, Thonet T, Gaussier E. Deep k-Means: Jointly clustering with k-Means and learning representations. Pattern Recognition Letters. 2020;138:185–192. Available from: https://dx.doi.org/10.1016/j.patrec.2020.07.028
  19. Zhu J, Jiang Z, Evangelidis GD, Zhang C, Pang S, Li Z. Efficient registration of multi-view point sets by K-means clustering. Information Sciences. 2019;488:205–218. Available from: https://dx.doi.org/10.1016/j.ins.2019.03.024
  20. Dreiseitl S, Ohno-Machado L. Logistic regression and artificial neural network classification models: a methodology review. Journal of Biomedical Informatics. 2002;35(5-6):352–359. Available from: https://dx.doi.org/10.1016/s1532-0464(03)00034-0
  21. Walker E. Regression Modeling Strategies. Technometrics. 2003;45(2):170. Available from: https://doi.org/10.1198/tech.2003.s158
  22. Hosmer DW, Lemeshow S, Sturdivant RX. Applied Logistic Regression. (Vol. 398) John Wiley & Sons. 2013.
  23. Musa RM, Majeed A, Kosni NA, Abdullah MR. Machine Learning in Team Sports: Performance Analysis and Talent Identification in Beach Soccer & Sepak-Takraw. Springer Nature. 2020.
  24. Macarini LAB, Cechinel C, Machado MFB, Ramos VFC, Munoz R. Predicting Students Success in Blended Learning—Evaluating Different Interactions Inside Learning Management Systems. Applied Sciences. 2019;9(24):5523. Available from: https://dx.doi.org/10.3390/app9245523
  25. Pope KS, Vasquez MJT. Ethics in Psychotherapy and Counseling: A Practical Guide. John Wiley & Sons. 2016.
  26. White C, Kolble R, Carlson R, Lipson N, Dolan M, Ali Y, et al. The effect of hand hygiene on illness rate among students in university residence halls. American Journal of Infection Control. 2003;31(6):364–370. Available from: https://dx.doi.org/10.1016/s0196-6553(03)00041-5
  27. Qasem J, Al-Rifaai J, Haddad AA. Personal hygiene among college students in Kuwait: A Health promotion perspective. Journal of Education and Health Promotion. 2018;7(1):92. Available from: https://dx.doi.org/10.4103/jehp.jehp_158_17
  28. Lai CS. A Study of Fifth Graders’ Environmental Learning Outcomes in Taipei. International Journal of Research in Education and Science. 2018;4(1):252–262.
  29. Ramadhan S, Sukma E, Indriyani V. Environmental education and disaster mitigation through language learning. IOP Conference Series: Earth and Environmental Science. 2019;314:012054. Available from: https://dx.doi.org/10.1088/1755-1315/314/1/012054
  30. Gan WY, Nasir MTM, Zalilah MS, Hazizi AS. Disordered eating behaviors, depression, anxiety and stress among Malaysian university students. College Student Journal. 2011;45(2):296–310.
  31. Damit N, Rahman HA, Ahmad SR. Factors associated with skipping breakfast among Inner Mongolia Medical students in China. Pakistan Journal of Nutrition. 2009;18(9):165–174.
  32. Reina R, Hutzler Y, Iniguez-Santiago MC, Moreno-Murcia JA. Student Attitudes Toward Inclusion in Physical Education: The Impact of Ability Beliefs, Gender, and Previous Experiences. Adapted Physical Activity Quarterly. 2019;36(1):132–149. Available from: https://dx.doi.org/10.1123/apaq.2017-0146


© 2020 Musa et al.This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee).


Subscribe now for latest articles and news.