• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2024, Volume: 17, Issue: 9, Pages: 804-810

Original Article

Prediction of Compressive Strength of Silica Fume Blended High Strength Concrete Using Response Surface Methodology Approach

Received Date:05 January 2024, Accepted Date:27 January 2024, Published Date:20 February 2024


Objectives: In this study, a model was developed to predict the compressive strength of High Strength Concrete (HSC) mixed with silica fume using Response Surface Methodology (RSM). This study investigated the effects of cement, water, Silica Fume (SF), Coarse Aggregate (CA), and silica fume-cement ratio (SF/C) on the 28-day compressive strength of HSC. Silica fume is added with varying amounts of SF (5% to 25%) to cement content. Methods: Response surface methodology (RSM) was performed to investigate the influence of independent variables on the compressive strength of HSC. Findings: Analysis of the response surface plot reveals a remarkably low error percentage of less than 5%. This reveals a high degree of confidence (95%) in the model's accuracy. This study yielded a coefficient of determination (R2) of 0. 9968. It is observed negligible deviation between predicted and actual 28-day compressive strength values, indicating high model accuracy. Novelty: The predicted equation is reasonably predicting the compressive strength of high strength concrete.

Keywords: High strength concrete, Response surface methodology, Silica fume, Compressive strength, Prediction model


  1. Meng T, Wei H, Yang X, Zhang B, Zhang Y, Zhang C. Effect of mixed recycled aggregate on the mechanical strength and microstructure of concrete under different water cement ratios”. Materials. 2021;14(10):1–16. Available from: https://doi.org/10.3390/ma14102631
  2. Xu D, Tang J, Hu X, Zhou Y, Yu C, Han F, et al. Influence of silica fume and thermal curing on long-term hydration, microstructure and compressive strength of ultra-high performance concrete (UHPC) Construction and Building Materials. 2023;395(1):132370. Available from: https://doi.org/10.1016/j.conbuildmat.2023.132370
  3. Hyodo T, Tsukamoto Y, Hashimoto K, Arai Y, Kakegawa T. Evaluation of shear moduli of premature age of ultra-fine particle cement modified sand with various water-cement ratio. Japanese Geotechnical Society Special Publication. 2020;8(13):536–540. Available from: https://doi.org/10.3208/jgssp.v08.j22
  4. Ali B, Qureshi LA, Baig HS, Malik S, Din M, Aslam HMU. Effect of Molasses and Water–Cement Ratio on Properties of Recycled Aggregate Concrete. Arabian Journal for Science and Engineering. 2020;45(5):3455–3467. Available from: https://doi.org/10.1007/s13369-019-04117-w
  5. Nagaraju TV, Mantena S, Azab M, Alisha SS, Hachem CE, Adamu M, et al. Prediction of high strength ternary blended concrete containing different silica proportions using machine learning approaches. Results in Engineering. 2023;17:1–14. Available from: https://doi.org/10.1016/j.rineng.2023.100973
  6. Crețu A, Mattea C, Stapf S, Ardelean I. The Effect of Silica Fume and Organosilane Addition on the Porosity of Cement Paste. Molecules. 2020;25(8):1–9. Available from: https://doi.org/10.3390/molecules25081762
  7. Ji H, Yang X, Luo Z, Bai F. Tensile Fracture Property of Concrete Affected by Interfacial Transition Zone. International Journal of Concrete Structures and Materials. 2023;17(1):1–14. Available from: https://doi.org/10.1186/s40069-022-00564-2
  8. Ja'e IA, Salih AR, Syamsir A, Min TH, Itam Z, Amaechi CV, et al. Experimental and predictive evaluation of mechanical properties of kenaf-polypropylene fibre-reinforced concrete using response surface methodology. Developments in the Built Environment. 2023;16:1–12. Available from: https://doi.org/10.1016/j.dibe.2023.100262
  9. Adamu M, Marouf ML, Ibrahim YE, Ahmed OS, Alanazi H, Marouf AL. Modeling and optimization of the mechanical properties of date fiber reinforced concrete containing silica fume using response surface methodology . Case Studies in Construction Materials. 2022;17:1–22. Available from: https://doi.org/10.1016/j.cscm.2022.e01633
  10. Poorarbabi A, Ghasemi M, Moghaddam MA. Concrete compressive strength prediction using non-destructive tests through response surface methodology. Ain Shams Engineering Journal. 2020;11(4):939–949. Available from: https://doi.org/10.1016/j.asej.2020.02.009
  11. Hamada HM, Al-Attar A, Shi J, Yahaya F, Jawahery MS, Yousif ST. Optimization of sustainable concrete characteristics incorporating palm oil clinker and nano-palm oil fuel ash using response surface methodology. Powder Technology. 2023;413:118054. Available from: https://doi.org/10.1016/j.powtec.2022.118054


© 2024 Nirosha et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.