• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 7, Pages: 292-299

Original Article

Soil Structure Interaction Analysis of a Single Layer Latticed Geodesic Dome

Received Date:05 January 2022, Accepted Date:28 January 2022, Published Date:22 February 2022

Abstract

Objectives: To analyze the soil structure interaction (SSI) behaviour of a geodesic dome for in situ soil conditions by using the response spectrum method (RSM). Methods: An existing geodesic dome of diameter 31m and a total height of 23.6 m is modeled using SAP2000, and the model is evaluated for the soil structure interaction. The existing geodesic dome structure falls under seismic zone II according to IS: 1893-2016, so the in-situ soil properties of the structure are considered to design the soil springs. Findings: Base shear in SSI condition observed 3.72 % lesser compared to the nonSSI conditions and natural time period, has been increased to 60.8% compared to nonSSI as it affirms the flexibility of the geodesic dome. Novelty: The present study aims to evaluate the dynamic behavior of the geodesic dome, which is a nonconventional structure in design and shape. Few investigations were carried out to analyze the soil structure interaction behavior on such structures.

Keywords: Soil structure Interaction; geodesic dome; response spectrum method; SAP2000; dynamic behaviour

References

  1. Ramaswamy GS, Eekhout M, Suresh GR. Analysis, Design and Construction of Steel Space Frames. (Vol. 350, pp. 727730142) Thomas Telford Publishing. 2002.
  2. Nie Gb, Zhu Xl, Zhi Xd, Wang F, Dai J. Study on Dynamic Behavior of Single-Layer Reticulated Dome by Shaking Table Test. International Journal of Steel Structures. 2018;18(2):635–649. Available from: https://dx.doi.org/10.1007/s13296-018-0021-2
  3. Barbieri N, Machado RD, Barbieri L. Dynamic Analysis of a Geodesic Dome. In: Procceedings of the 24th ABCM International Congress of Mechanicl Engineering. (pp. 24-28) ABCM. 2017.
  4. Pilarska D, Maleska T. Numerical Analysis of Steel Geodesic Dome under Seismic Excitations. Materials. 2021;14(16):4493. Available from: https://dx.doi.org/10.3390/ma14164493
  5. Hosseini M, Hajnasrollah S, Herischian M. A Comparative Study on the Seismic Behavior of Ribbed, Schwedler, and Diamatic Space Domes by Using Dynamic Analyses. Proceedings of the 15WCEE. 2012;p. 24–28.
  6. Yu Z, Li S, Lu D, Lu C, Liu J. Failure mechanism of single-layer steel reticular domes with reinforced concrete substructure subjected to severe earthquakes. International Journal of Steel Structures. 2016;16(4):1083–1094. Available from: https://dx.doi.org/10.1007/s13296-016-0025-8
  7. Chang M, Zhang M. Architecture Design of Datacenter for Cloud English Education Platform. International Journal of Emerging Technologies in Learning (iJET). 2019;14:24. Available from: https://dx.doi.org/10.3991/ijet.v14i01.9464
  8. Raheem SEA, Ahmed MM, Alazrak TMA. Evaluation of soil–foundation–structure interaction effects on seismic response demands of multi-story MRF buildings on raft foundations. International Journal of Advanced Structural Engineering. 2015;7(1):11–30. Available from: https://dx.doi.org/10.1007/s40091-014-0078-x
  9. Wong H, Leung. Dynamic soil-structure interaction. California Institute of Technology thesis
  10. Hokmabadi AS, Fatahi B. Influence of Foundation Type on Seismic Performance of Buildings Considering Soil–Structure Interaction. International Journal of Structural Stability and Dynamics. 2016;16(08):1550043. doi: 10.1142/s0219455415500431
  11. Lysmer J, Richart FE. Dynamic Response of Footings to Vertical Loading. Journal of the Soil Mechanics and Foundations Division. 1966;92:65–91. Available from: https://dx.doi.org/10.1061/jsfeaq.0000846
  12. Poulos HG. Tall building foundations: design methods and applications. Innovative Infrastructure Solutions. 2016;1(1). doi: 10.1061/JSFEAQ.0000846
  13. Loukidis D, Tamiolakis GP. Spatial distribution of Winkler spring stiffness for rectangular mat foundation analysis. Engineering Structures. 2017;153:443–459. Available from: https://dx.doi.org/10.1016/j.engstruct.2017.10.001
  14. Zhou Y, Zhou Y, Yi W, Chen T, Tan D, Mi S. Operational Modal Analysis and Rational Finite-Element Model Selection for Ten High-Rise Buildings based on On-Site Ambient Vibration Measurements. Journal of Performance of Constructed Facilities. 2017;31(5):04017043. Available from: https://dx.doi.org/10.1061/(asce)cf.1943-5509.0001019

Copyright

© 2022 Roopa et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.