• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 42, Pages: 3778-3785

Original Article

Solid Waste Detection and Recognition using Faster RCNN

Received Date:26 June 2023, Accepted Date:03 October 2023, Published Date:13 November 2023


Objective: To develop a two-stage object detection method based on convolutional neural networks (CNNs) to identify and classify solid waste, contributing to the creation of intelligent systems for society. Methods: The study utilizes a base network, ResNet 101, to generate convolution feature maps. In the first stage, a Region Proposal Network (RPN) is created on top of these convolution features, producing 256-dimensional feature vectors, objectness scores, and bounding rectangles for different anchor boxes. In the next stage, the region proposals are used to train a softmax layer and regressor, enabling the classification and localization of five types of solid waste, namely cardboard, glass, metal, paper and plastic. Findings: The proposed Faster RCNN demonstrates nearly real-time object detection rates. Experimental results reveal that the Faster RCNN with ResNet 101 and RPN achieves an accuracy of 96.7%, outperforming the Faster RCNN with a simple CNN, which achieves an accuracy of 86.7%. Novelty: Unlike traditional R-CNN, which relies on computationally inefficient selective search, the proposed Faster RCNN employs RPN, a small neural network sliding on the last convolution layer's feature map, predicting object presence and bounding boxes. This approach significantly improves efficiency compared to the exhaustive examination in R-CNN's selective search.

Keywords: Object Detection, RCNN, Fast RCNN, Faster RCNN, RPN, ROI pooling


  1. Yang Z, Bao Y, Liu Y, Zhao Q, Zheng H, Bao Y. Research on deep learning garbage classification system based on fusion of image classification and object detection classification. Mathematical Biosciences and Engineering. 2023;20(3):4741–4759. Available from: https://www.aimspress.com/article/doi/10.3934/mbe.2023219
  2. Atikuzzaman M, Hossain MP, Islam MZ, Kabir SA. A Comparative Analysis of Convolutional Neural Networks for Trash Classification. GUB Journal of Science and Engineering. 2021;8(1):17–23. Available from: https://doi.org/10.3329/gubjse.v8i1.62327
  3. Habib G, Qureshi S. Optimization and acceleration of convolutional neural networks: A survey. Journal of King Saud University - Computer and Information Sciences. 2022;34(7):4244–4268. Available from: https://doi.org/10.1016/j.jksuci.2020.10.004
  4. Puspaningrum AP, Endah SN, Sasongko PS, Kusumaningrum R, Khadijah, Rismiyati, et al. Waste Classification Using Support Vector Machine with SIFT-PCA Feature Extraction. In: 2020 4th International Conference on Informatics and Computational Sciences (ICICoS). Semarang, Indonesia, 10-11 November 2020. IEEE. p. 1–6.
  5. Srilatha J, Subashini TS, Vaidehi K. Classification of Plastic and Non-Plastic Wastes Using Mobile net and SVM. Mathematical Statistician and Engineering Applications. 2022;71(4):7267–7278. Available from: https://doi.org/10.17762/msea.v71i4.1344
  6. Faisal M, Chaudhury S, Sankaran KS, Raghavendra SJ, Chitra RJ, Eswaran M, et al. Faster R-CNN Algorithm for Detection of Plastic Garbage in the Ocean: A Case for Turtle Preservation. Mathematical Problems in Engineering. 2022;2022:1–11. Available from: https://doi.org/10.1155/2022/3639222
  7. Sarosa M, Muna N, Rohadi E. Performance of Faster R-CNN to Detect Plastic Waste. International Journal of Advanced Trends in Computer Science and Engineering. 2020;9(5):7756–7762. Available from: https://www.warse.org/IJATCSE/static/pdf/file/ijatcse120952020.pdf
  8. Sharma AK, Jain A, Chaudhary D, Tiwari S, Mahdin H, Baharum Z, et al. An Approach to Automatic Garbage Detection Framework Design ing using CNN. International Journal of Advanced Computer Science and Applications. 2023;14(2):257–262. Available from: https://thesai.org/Downloads/Volume14No2/Paper_31-An_Approach_to_Automatic_Garbage_Detection_Framework.pdf
  9. Appe SRN, Arulselvi G, Balaji GN. Tomato Ripeness Detection and Classification using VGG based CNN Models. International Journal of Intelligent Systems and Applications in Engineering. 2023;11(1):296–302. Available from: https://www.ijisae.org/index.php/IJISAE/article/view/2538
  10. Patel D, Patel F, Patel S, Patel N, Shah D, Patel V. Garbage Detection using Advanced Object Detection Techniques. In: 2021 International Conference on Artificial Intelligence and Smart Systems (ICAIS). Coimbatore, India, 25-27 March 2021. IEEE . .
  11. Chen Y, Sun J, Bi S, Meng C, Guo F. Multi-objective solid waste classification and identification model based on transfer learning method. Journal of Material Cycles and Waste Management. 2021;23(6):2179–2191. Available from: https://doi.org/10.1007/s10163-021-01283-8
  12. Zhou QQQ, Wang J, Tang W, Hu ZCC, Xia ZYY, Li XSS, et al. Automatic Detection and Classification of Rib Fractures on Thoracic CT Using Convolutional Neural Network: Accuracy and Feasibility. Korean Journal of Radiology. 2020;21(7):869–879. Available from: https://doi.org/10.3348/kjr.2019.0651
  13. Guo Q, Liu L, Xu W, Gong Y, Zhang X, Jing W. An Improved Faster R-CNN for High-Speed Railway Dropper Detection. IEEE Access. 2020;8:105622–105633. Available from: https://ieeexplore.ieee.org/document/9110596
  14. Nie Z, Duan W, Li X. Domestic garbage recognition and detection based on Faster R-CNN. In: 2020 2nd International Conference on Electronics and Communication, Network and Computer Technology (ECNCT), Journal of Physics: Conference Series. Chengdu, China, 23-25 October 2020. IOP Publishing. 1738:1–7.


© 2023 Srilatha et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.