• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2021, Volume: 14, Issue: 32, Pages: 2596-2606

Original Article

Spectrum Sensing in Non-Gaussian Noise

Received Date:06 June 2021, Accepted Date:29 August 2021, Published Date:27 September 2021


Background: Spectrum sensing is a crucial step to realize the Cognitive Radio technology. The spectrum sensing schemes at low signal-to-noise ratio, noise uncertainty and especially under the background of non-Gaussian noise, provide low detection of the primary user. This results in missed detection or false alarm and increases higher interference to the primary user. Objectives: Detection schemes designed for additive Gaussian noise exhibit poor performance in the non-Gaussian environment. This study considers the problem of spectrum sensing with the assumption that the noise follows a non-Gaussian distribution with heavier tails. Methods/findings: A fuzzy logicbased method is proposed for primary user detection under non Gaussian Noise. The results are highlighted for the Laplacian noise. Through Monte Carlo simulations it is observed that Laplacian noise noticeably affects the performance of energy detector. Also, a fractional change in noise uncertainty degrades the performance of energy detector. The performance of the proposed scheme is presented through receiver operating characteristic (ROC) and plot of the detection probability versus signal-to-noise ratio (SNR) using simulations. It is shown that by appropriately choosing the membership functions and the fuzzy rule base in the fuzzy inference system the proposed fuzzy logic method for spectrum sensing provides reliable detection.

Keywords: NonGaussian noise; Fuzzy logic; Spectrum sensing; noise uncertainty


  1. Kumar A, Thakur P, Pandit S, Singh G. Threshold selection and cooperation in fading environment of cognitive radio network: Consequences on spectrum sensing and throughput. AEU - International Journal of Electronics and Communications. 2020;117:153101. Available from: https://dx.doi.org/10.1016/j.aeue.2020.153101
  2. Yu S, Liu J, Wang J, Ullah I. Adaptive Double-Threshold Cooperative Spectrum Sensing Algorithm Based on History Energy Detection. Wireless Communications and Mobile Computing. 2020;2020:1–12. Available from: https://dx.doi.org/10.1155/2020/4794136
  3. Mahendru G, Shukla AK, Banerjee P, Patnaik LM. Adaptive Double Threshold Based Spectrum Sensing to Overcome Sensing Failure in Presence of Noise Uncertainty. 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN). 2019;p. 466–471. Available from: https://doi.org/10.1109/SPIN.2019.8711570
  4. Salahdine F, Kaabouch N, Ghazi HE. Techniques for dealing with uncertainty in cognitive radio networks. 2017 IEEE 7th Annual Computing and Communication Workshop and Conference (CCWC). 2017;p. 1–6. Available from: https://doi.org/10.1109/CCWC.2017.7868352
  5. Yang T, Wu Y, Li L, Xu W, Tan W. A Two-Step Cooperative Energy Detection Algorithm Robust to Noise Uncertainty. Wireless Communications and Mobile Computing. 2019;2019:1–10. Available from: https://dx.doi.org/10.1155/2019/3912784
  6. Gao R, Qi P, Zhang Z. Frequency domain goodness of fit test based spectrum sensing method with dynamically varying noise. China Communications. 2020;17(12):172–179. Available from: https://dx.doi.org/10.23919/jcc.2020.12.012
  7. Ahuja B, Kaur G. Two-Stage Spectrum Sensing Using Fuzzy Logic for Cognitive Radio Networks. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences. 2020;90(3):515–525. Available from: https://dx.doi.org/10.1007/s40010-019-00595-7
  8. Mabrook MM, Taha HA, Hussein AI. Cooperative spectrum sensing optimization based adaptive neuro-fuzzy inference system (ANFIS) in cognitive radio networks. Journal of Ambient Intelligence and Humanized Computing. 2020;5:1–2. Available from: https://dx.doi.org/10.1007/s12652-020-02121-9
  9. Gao R, Jing F, Wang J, Zhang J, Zhang Y. A New Spectrum Sensing Method with Low SNR under Laplace Noise. 2020 IEEE 3rd International Conference of Safe Production and Informatization (IICSPI). 2020;p. 291–297. Available from: https://doi.org/10.1109/IICSPI51290.2020.9332346
  10. Tan F, Song X, Leung C, Cheng J. Collaborative Spectrum Sensing in a Cognitive Radio System with Laplacian Noise. IEEE Communications Letters. 2012;16(10):1691–1694. Available from: https://dx.doi.org/10.1109/lcomm.2012.080312.120517
  11. Ahuja B, Kaur G. Two-stage spectrum sensing using fuzzy logic for cognitive radio networks. Proceedings of the National Academy of Sciences, India Section A: Physical Sciences. 2020;90:515–540.
  12. Celikoglu A, Tirnakli U. Skewness and kurtosis analysis for non-Gaussian distributions. Physica A: Statistical Mechanics and its Applications. 2018;499:325–334. Available from: https://dx.doi.org/10.1016/j.physa.2018.02.035
  13. Gao R, Li Z, Li H, Ai B. Absolute Value Cumulating Based Spectrum Sensing with Laplacian Noise in Cognitive Radio Networks. Wireless Personal Communications. 2015;83(2):1387–1404. Available from: https://dx.doi.org/10.1007/s11277-015-2457-4
  14. Tandra R, Sahai A. SNR Walls for Signal Detection. IEEE Journal of Selected Topics in Signal Processing. 2008;2(1):4–17. Available from: https://dx.doi.org/10.1109/jstsp.2007.914879


© 2021 Reddy & Ravinder. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.