• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology


Indian Journal of Science and Technology

Year: 2022, Volume: 15, Issue: 45, Pages: 2508-2514

Original Article

Thermal Properties of Graphene based Polymer Nanocomposites

Received Date:09 September 2022, Accepted Date:13 October 2022, Published Date:09 December 2022


Objective: Epoxy is a commonly used material for electronic components packaging, yet its inherent thermal resistance can’t meet rising demands. To improve the thermal performance of Epoxy material, the high thermal conductivity of Graphene nanoparticles interspersed into the epoxy matrix. This paper focuses on experimental results on the thermal properties of Graphene-based epoxy composite. Methods: Scanning Electron Microscopy and Energy Dispersive X-Ray Spectroscopy used for elemental analysis. Guarded Comparative Longitudinal Heat Flow Technique, thermogravimetric analysis, digital scanning calorimeter, and thermogravimetric analysis used to determine thermal conductivity, Coefficient of thermal expansion, specific heat capacity and thermal stability as per ASTM standard respectively. Findings: Thermal decomposition temperature enhanced from 170 0C of pure epoxy to 329 0C for epoxy with 0.5 wt% of Graphene nanofiller, and it increased with an increase in filler loading, hence proving the thermal stability of composite improved with the addition of graphene nanoparticles. Maximum thermal conductivity of 0.43 W/mK and thermal diffusivity of 0.686 x10-6 m2/s had recorded for 2 wt% of Graphene additives. Linear thermal expansion coefficient and specific heat reduce for the composite material with an increase in filler. Therefore, this indicates heat resistivity improved with minimum heat storage. An increase in stability, conductivity, and diffusivity with the decrease in expansion coefficient and specific heat capacity due to heat proves a favourable factor for thermally conductive material. Novelty: The easy method employed for material preparation, also the use of ultra-low filler content tends to reduce composite cost. Graphene-based Epoxy composites with modified properties represent a conceivable packaging material.

Keywords: Thermal Properties; Epoxy composites; Specific heat; Thermal conductivity; Thermal diffusivity


  1. Akhtar MW, Kim JS, Memon MA, Baloch MM. Hybridization of hexagonal boron nitride nanosheets and multilayer graphene: Enhanced thermal properties of epoxy composites. Composites Science and Technology. 2020;195:108183. Available from: https://doi.org/10.1016/j.compscitech.2020.108183
  2. Bahru R, Zamri MFMA, Shamsuddin AH, Shaari N, Mohamed MA. A review of thermal interface material fabrication method toward enhancing heat dissipation. International Journal of Energy Research. 2021;45(3):3548–3568. Available from: https://doi.org/10.1002/er.6078
  3. Ouyang Y, Ding F, Bai L, Li X, Hou G, Fan J, et al. Design of network Al2O3 spheres for significantly enhanced thermal conductivity of polymer composites. Composites Part A: Applied Science and Manufacturing. 2020;128:105673. Available from: https://doi.org/10.1016/j.compositesa.2019.105673
  4. Yang X, Zhong X, Zhang J, Gu J. Intrinsic high thermal conductive liquid crystal epoxy film simultaneously combining with excellent intrinsic self-healing performance. Journal of Materials Science & Technology. 2021;68:209–215. Available from: https://doi.org/10.1016/j.jmst.2020.08.027
  5. Zhang H, Zhang X, Fang Z, Huang Y, Xu H, Liu Y, et al. Recent Advances in Preparation, Mechanisms, and Applications of Thermally Conductive Polymer Composites: A Review. Journal of Composites Science. 2020;4(4):180. Available from: https://doi.org/10.3390/jcs4040180
  6. Lv R, Ren Y, Guo H, Bai S. Recent progress on thermal conductivity of graphene filled epoxy composites. Nano Materials Science. 2022;4(3):205–219. Available from: https://doi.org/10.1016/j.nanoms.2021.06.001
  7. Olowojoba GB, Kopsidas S, Eslava S, Gutierrez ES, Kinloch AJ, Mattevi C, et al. A facile way to produce epoxy nanocomposites having excellent thermal conductivity with low contents of reduced graphene oxide. Journal of Materials Science. 2017;52(12):7323–7344. Available from: https://doi.org/10.1007/s10853-017-0969-x
  8. Wang F, Drzal LT, Qin Y, Huang Z. Mechanical properties and thermal conductivity of graphene nanoplatelet/epoxy composites. Journal of Materials Science. 2015;50(3):1082–1093. Available from: https://doi.org/10.1007/s10853-014-8665-6
  9. Yang Q, Zhang Z, Gong X, Yao E, Liu T, Zhang Y, et al. Thermal conductivity of Graphene-polymer composites: implications for thermal management. Heat and Mass Transfer. 2020;56(6):1931–1945. Available from: https://doi.org/10.1007/s00231-020-02821-0
  10. Osman A, Elhakeem A, Kaytbay S, Ahmed A. Thermal, electrical and mechanical properties of graphene/nano-alumina/epoxy composites. Materials Chemistry and Physics. 2021;257:123809. Available from: https://doi.org/10.1016/j.matchemphys.2020.123809
  11. Nouri-Borujerdi A, Kazemi-Ranjbar S. Thermal synergistic effect in hybrid filler epoxy composites consisting of graphene nanoplatelets and SiC particles. Thermal Science and Engineering Progress. 2021;25:100964. Available from: https://doi.org/10.1016/j.tsep.2021.100964
  12. Yu S, Li X, Zou M, Guo X, Ma H, Wang S. Effect of the Aromatic Amine Curing Agent Structure on Properties of Epoxy Resin-Based Syntactic Foams. ACS Omega. 2020;5(36):23268–23275. Available from: https://doi.org/10.1021/acsomega.0c03085
  13. Patil KS, Zope PH, Patil UT, Patil PD, Dubey RS, Gupta GR. Synthesis and thermophysical studies of polyanilines. Bulletin of Materials Science. 2019;42(1):1–9. Available from: https://doi.org/10.1007/s12034-018-1705-0
  14. Dandapani, DK, Revennasiddappa, Girish S. Thermal properties of epoxy nanoclay composite materials. J Phys Conf Ser. 2021;(1) 2070. Available from: https://doi:10.1088/1742-6596/2070/1/012171
  15. Greer MC, Macdonald BL, Stalla D. Cobalt, lead, and borax: Preliminary LA-ICP-MS and SEM-EDS analysis of Late-18th- to Mid-19th-century British refined earthenware glazes. Journal of Archaeological Science: Reports. 2021;37:103013. Available from: https://doi.org/10.1016/j.jasrep.2021.103013
  16. Wang S, Tambraparni M, Qiu J, Tipton J, Dean D. Thermal Expansion of Graphene Composites. Macromolecules. 2009;42(14):5251–5255. Available from: https://doi.org/10.1021/ma900631c
  17. Chandrasekaran S, Sato N, Tölle F, Mülhaupt R, Fiedler B, Schulte K. Fracture toughness and failure mechanism of graphene based epoxy composites. Composites Science and Technology. 2014;97:90–99. Available from: http://dx.doi.org/10.1016/j.compscitech.2014.03.014
  18. Zhi M, Huang W. Curing kinetics, mechanical properties and thermal stability of epoxy/graphene nanoplatelets (GNPs) powder coatings. Journal of Wuhan University of Technology-Mater. Sci. Ed.. 2016;31(5):1155–1161. Available from: https://doi.org/10.1007/s11595-016-1505-6
  19. Kalyanavalli V, Ramadhas TKA, Sastikumar D. Determination of thermal diffusivity of Basalt fiber reinforced epoxy composite using infrared thermography. Measurement. 2019;134:673–678. Available from: https://doi.org/10.1016/j.measurement.2018.11.004
  20. Gresil M, Wang Z, Poutrel QAA, Soutis C. Thermal Diffusivity Mapping of Graphene Based Polymer Nanocomposites. Scientific Reports. 2017;7(1):1–10. Available from: http://dx.doi.org/10.1038/s41598-017-05866-0
  21. Abenojar J, Enciso B, Pantoja M, Velasco F, Martínez MAA. Thermal characterization and diffusivity of two mono-component epoxies for transformer insulation. International Journal of Adhesion and Adhesives. 2020;103:102726. Available from: https://doi.org/10.1016/j.ijadhadh.2020.102726


© 2022 Dandapani & Devendra.  This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)


Subscribe now for latest articles and news.