• P-ISSN 0974-6846 E-ISSN 0974-5645

Indian Journal of Science and Technology

Article

Indian Journal of Science and Technology

Year: 2023, Volume: 16, Issue: 6, Pages: 409-419

Original Article

Investigation and Synthesis of Biowaste Composite by Squeeze Casting Process: Microstructure Evolution for Biomedical Applications

Received Date:04 November 2022, Accepted Date:17 January 2023, Published Date:11 February 2023

Abstract

Objectives: To investigate the mechanical and microstructural behaviour of zinc hybrid composites. Zinc alloys are utilized in biomaterial development for implant applications due to their suitable corrosion properties. However, the advantages connected with hybrid reinforcements suggest further research. The objective is to determine the impact of Hydroxyapatite (HA) and Calcium Silicate (CS) derived from biowaste as hybrid reinforcement in Zn-1Mg- 0.2Ti alloy. The influence of hybrid reinforcement (HA&CS) was assessed in various weight percentages. Methods: Synthesis of the reinforcement (HA&CS) involved 10h milling and calcination at 1000ºC. Pure Zinc and Zn-1Mg-0.2Ti alloy with 5 wt. % and 10 wt. % (HA and CS) biomaterials were fabricated by the squeeze casting process. Hardness tests of the cast samples were conducted with a 1 kg (Hv) force and a 15-second dwell time. The compressive test was performed as per ASTM E9-19, with a ram speed 0.5mm/min. Findings: Results suggest that, among all three cases, Zn-1Mg-0.2Ti-(2.5 HA / 2.5 CS) composite exhibited favourable mechanical and microstructural properties. The Zn-1Mg-0.2Ti-(5 HA / 5 CS) composite density was 5.52 kg/m3, a significant 25% decrease compared to pure zinc metal. The Hardness value of Zn-1Mg- 0.2Ti-(2.5 HA / 2.5 CS) was 82Hv, which is 148% increase compared to pure zinc metal (33Hv). The compression tests demonstrated that the Zn-1Mg- 0.2Ti-(2.5 HA / 2.5 CS) exhibited the highest ultimate compression strength (364 MPa) and toughness modulus (131 MPa) due to sufficient adherence of the reinforcement with the matrix. Novelty: The novelty of the study was to introduce hybrid reinforcements (HA and CS) in the Zn-1Mg-0.2Ti alloy to increase its hardness and compressive strength. Zn-1Mg-0.2Ti-(2.5 HA / 2.5 CS) is a new hybrid composite compared to recent biomaterials. Furthermore, it can be recommended for implants in orthopaedic surgical applications.

Keywords: Zinc Composites; Biodegradable Materials; Hydroxyapatite;Calcium Silicate (Wollastonite); Compressive Strength

References

  1. Hernández-Escobar D, Champagne S, Yilmazer H, Dikici B, Boehlert CJ, Hermawan H. Current status and perspectives of zinc-based absorbable alloys for biomedical applications. Acta Biomaterialia. 2019;97:1–22. Available from: https://doi.org/ 10.1016/ j.actbio.2019.07.034
  2. Pachla W, Przybysz S, Jarzębska A, Bieda M, Sztwiertnia K, Kulczyk M, et al. Structural and mechanical aspects of hypoeutectic Zn–Mg binary alloys for biodegradable vascular stent applications. Bioactive Materials. 2021;6(1):26–44. Available from: https://doi.org/10.1016/j.bioactmat.2020.07.004
  3. Li L, Liu C, Jiao H, Yang L, Cao F, Wang X, et al. Investigation on microstructures, mechanical properties and in vitro corrosion behavior of novel biodegradable Zn-2Cu-0.01Ti-xLi alloys. Journal of Alloys and Compounds. 2021;888:161529. Available from: https://doi.org/10.1016/j.jallcom.2021.161529
  4. Puad NASM, Koshy P, Abdullah HZ, Idris MI, Lee TC. Syntheses of hydroxyapatite from natural sources. Heliyon. 2019;5(5):e01588. Available from: https://doi.org/ 10.1016/j.heliyon.2019.e01588
  5. Palakurthy S, K. VGR, Samudrala RK, P. AA. In vitro bioactivity and degradation behaviour of β-wollastonite derived from natural waste. Materials Science and Engineering: C. 2019;98:109–117. Available from: https://doi.org/10.1016/j.msec.2018.12.101
  6. Mathina M, Shinyjoy E, Kavitha L, Gopi D. Biowaste‐derived hydroxyapatite reinforced with polyvinyl pyrrolidone/aloevera composite for biomedical applications. International Journal of Applied Ceramic Technology. 2021;18(1):221–234. Available from: https://doi.org/10.1111/ijac.13630
  7. Zhang L. Surface Modification of Titanium by Hydroxyapatite/CaSiO3/Chitosan Porous Bioceramic Coating. International Journal of Electrochemical Science. 2020;15:3616–3626. Available from: https://doi.org/10.20964/2020.04.08
  8. Pinc J, Čapek J, Kubásek J, Průša F, Hybášek V, Veřtát P, et al. Characterization of a Zn-Ca5(PO4)3(OH) Composite with a High Content of the Hydroxyapatite Particles Prepared by the Spark Plasma Sintering Process. Metals. 2020;10(3):372. Available from: https://doi.org/10.3390/met10030372
  9. Pathak DK, Pandey PM. An experimental investigation of the fabrication of biodegradable zinc–hydroxyapatite composite material using microwave sintering. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. 2020;234(14):2863–2880. Available from: https://doi.org/10.1177/0954406220910445
  10. Shanmuganantha L, Baharudin A, Sulong AB, Shamsudin R, Ng MH. Prospect of Metal Ceramic (Titanium-Wollastonite) Composite as Permanent Bone Implants: A Narrative Review. Materials. 2021;14(2):277. Available from: https://doi.org/10.3390/ma14020277
  11. Seetharaman S, Subramanian J, Singh RA, Wong WLE, Nai MLS, Gupta M. Mechanical Properties of Sustainable Metal Matrix Composites: A Review on the Role of Green Reinforcements and Processing Methods. Technologies. 2022;10(1):32. Available from: https://doi.org/10.3390/technologies10010032
  12. Pal A, Metya AK, Chowdhury AR, Sinha A. Structural and Mechanical Behavior of Mechanochemically Synthesized Nanocrystalline Hydroxyapatite from Mercenaria Clam Shells. Transactions of the Indian Ceramic Society. 2020;79(4):175–181. Available from: https://doi.org/10.1080/0371750X.2020.1792806
  13. Kubásek J, Dvorský D, Čapek J, Pinc J, Vojtěch D. Zn-Mg Biodegradable Composite: Novel Material with Tailored Mechanical and Corrosion Properties. Materials. 2019;12(23):3930. Available from: https://doi.org/10.3390/ma12233930
  14. Wang K, Tong X, Lin J, Wei A, Li Y, Dargusch M, et al. Binary Zn–Ti alloys for orthopedic applications: Corrosion and degradation behaviors, friction and wear performance, and cytotoxicity. Journal of Materials Science & Technology. 2021;74:216–229. Available from: https://doi.org/ 10.1016/j.jmst.2020.10.031
  15. Zhang S, Yuan P, Wang X, Wang T, Zhao L, Cui C. Fabrication and Properties of Zn-3Mg-1Ti Alloy as a Potential Biodegradable Implant Material. Materials. 2022;15(3):940. Available from: https:// doi.org /10.3390/ma15030940
  16. Hosová K, Pinc J, Školáková A, Bartůněk V, Veřtát P, Školáková T, et al. Influence of Ceramic Particles Character on Resulted Properties of Zinc-Hydroxyapatite/Monetite Composites. Metals. 2021;11(3):499. Available from: https://doi.org/10.3390/met11030499

Copyright

© 2023 Ramesh et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Published By Indian Society for Education and Environment (iSee)

DON'T MISS OUT!

Subscribe now for latest articles and news.